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Abstract 

Efficient portfolio is a portfolio that yields maximum expected return given a level of risk or 
has minimum level of risk given a level of expected return.  However, the optimal portfolios seem not 
being as efficient as intended.  Especially during financial crisis period optimal portfolio is not an 
optimal investment as it does not yield maximum return given a specific level of risk, vice and versa.  
One possible explanation for an unimpressive performance of the seemingly efficient portfolio is 
incorrectness in parameter estimates called “estimation risk in parameter estimates”.  Six different 
estimating strategies are employed to explore ex post portfolio performance when estimation risk is 
incorporated.  These strategies are traditional mean-variance (EV), Adjusted Beta (AB) approach, 
Resampled Efficient Frontier (REF), Capital Asset Pricing Model (CAPM), Single Index Model 
(SIM), and Single Index Model incorporating shrinkage Bayesian factor namely Bayesian Single 
Index Model (BSIM).  Among the six alternative strategies, shrinkage estimators incorporating the 
single index model outperforms other traditional portfolio selection strategies.  Allowing for asset 
mispricing and applying Bayesian shrinkage adjusted factor to each asset’s alpha, a single factor 
namely excess market return is adequate in alleviating estimation uncertainty.   
 
Keywords: estimation risk, parameter uncertainty, Bayesian portfolio, efficient portfolio, Single 
Index Model 
 
1. Introduction 
 

Efficient portfolio is a portfolio that yields maximum expected return given a level of risk or 
has minimum level of risk given a level of expected return.  Traditional efficient portfolio and its 
extension incorporating single factor model as suggested by Markowitz (1952), Sharpe (1963), and 
Elton, Gruber, Padberg (1976), and Michaud (1998) had been explored and implemented in active 
portfolio management.  Optimal portfolio or the active portfolio is determined at the tangency of the 
capital allocation line and the efficient frontier.  Portfolio or asset allocation came into play dividing 
individual wealth investing in three investment choices.  The first choice of investment is an active 
portfolio, the second is the market index portfolio or passive portfolio, and the third is riskless asset or 
cash.  However, performance of an investment strategy recommended by a fund manager, mostly, is 
not impressive.  Especially during financial crisis period, optimal portfolio is not an optimal 
investment as intended.  One possible explanation for an unimpressive performance of the seemingly 
efficient portfolio is incorrectness in parameter estimates called “estimation risk in parameter 
estimates”.  Two crucial parameters in an efficient portfolio construction are expected return and 
variance-covariance matrix.  Estimation risk in portfolio formation causes by treating sample 
estimates as true parameters.  This paper aims at taking estimation risk in parameter estimates into 
account when construct an efficient frontier using empirical Bayesian shrinkage incorporating single 
factor (index) model and comparing Bayesian portfolio’s performance with other portfolio formation 
strategies during two financial crisis periods. 

Various studies in the past can be divided into three groups.  The first group conducted their 
studies based on historical data ignoring estimation risk.  This group includes Markowitz (1952), 
Sharpe (1964), Kraus and Litzenberger (1976), Kroll, Levy and Markowitz (1984), and 
Chunhachinda et al. (1997a and 1997b).  The second group of studies took estimation risk into 
account by proposing a Bayesian or resample efficient frontier approach using historical data together 
with Monte Carlo estimation process; for example, Stein (1962), Kalymon (1971), Barry (1974), 
Klein and Bawa (1976), Brown (1979), Chen and Brown (1983), Jorion (1986), Horst, et.al (2002), 
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Markowtiz and Usmen (2003), and Michaud (2003).  The third group focused on the asset pricing 
approach by incorporating a factor model such as the Capital Asset Pricing Model (CAPM) and/or 
Arbitrage Pricing Theory (APT) in the portfolio selection process, e.g., Polson and Tew (2000), and 
Pastor (2000).  The third group uses a factor model to benchmark the performance of a recommended 
portfolio.  Portfolio optimization is performed based on historical data to estimate two crucial 
parameters of the model, namely expected return and variance-covariance matrix.  Estimation risk 
due to treating sample estimates as true parameters had been taken into account in optimal portfolio 
formation via Bayesian Portfolio Optimization process.   

Studies regarding the effect of estimation risk on an optimal portfolio have been conducted 
by a lot of scholars.  Barry (1974) stated that estimation risk does not change the efficient set but will 
affect the optimal portfolio.  Bawa, Brown, and Klein (1979) and Klein and Bawa (1977) stated that, 
when estimation risk is taken into account, assuming that security returns are generated by a 
stationary multivariate normal distribution for which the investor has a diffuse prior, the effects of 
estimation risk on the selection of an optimal portfolio from a set of risky assets cause the location, 
but not the composition of the efficient frontier to change.  Frost and Savarino (1986) suggested 
portfolio selection within a Bayesian framework to deal with estimation risk and stated that using 
classical mean to estimate expected return and other moments of asset returns leads to suboptimal 
portfolio choices resulting in a loss of investor utility.  Jorion (1986) indicated that uncertainty about 
parameter values leads to suboptimal portfolio choices resulting in a loss in utility if historical 
average is used as a true parameter estimate.  As documented in Jorion (1986, 1991), the James-Stein 
estimator is derived from the summation of components of a quadratic loss function using a shrinkage 
function to estimate parameter values and is used to validate the claim that sample mean is an 
inadmissible estimator.  Effron and Morris (1973) have proven that the James-Stein estimator 
dominates MLE with good rules of Bayesian properties.  Jorion (1986, 1991) extended the work of 
James-Stein to a Bayes-Stein shrinkage mean assuming variance parameters are known.   

Britten-Jones (1999) used 20 years of data on 11 country stock indexes to test hypotheses 
about the weights of mean-variance efficient portfolios.  The evidence documented that sampling 
error in estimates of the weights of global efficient portfolios is as large as when the return vector and 
variance-covariance matrix are estimated by a traditional approach.  This means that the portfolio 
risks of the traditionally suggested efficient portfolios will be underestimated compared with that of 
optimal portfolio incorporating estimation risk.  Taking estimation uncertainty in portfolio 
construction process, Michaud (1998) proposed Resample EfficienyTM technique introducing Monte 
Carlo methods based on eight asset classes1 of 18 years historical data.  Resampled Efficiency 
approach solved two major drawbacks of traditional portfolio namely concentrated and instability 
portfolios2.  Markowitz and Usmen (2003) performed experiment on portfolio performance between 
resampled and diffuse Bayes portfolios and reported that resampled efficient portfolios outperform 
those of diffuse Bayes3 portfolios.  He (2007) revised an information updating model of Treynor and 
Black (1973) within a Bayesian framework accounting for alpha uncertainty.  By varying level of 
overall active risk budget and centering alpha on its equilibrium level of zero, the result indicated that 
pension fund managers can reflects the overall confidence in the ability of active management.  
However, no recommendation for a better portfolio formation strategy had been made.    

This study emphasizes investigating and suggesting an appropriate portfolio formation 
strategy by applying Bayesian shrinkage estimation to portfolio selection when uncertainty about 
parameter values exists.  Two major portfolio formation strategies are i) optimized portfolio within a 
traditional mean-variance efficient and ii) optimized portfolio applying shrinkage asset return 
incorporating a factor model approach.  Model and methodology are discussed in Section 2.  The data 
and descriptive statistics of sectorial returns are discussed in Section 3.  Section 4 elaborates 
empirical evidences.  The last section is the conclusion. 
 

                                                 
1 Eight asset classes are Canada, France, Germany, Japan, U.K., U.S. equities, and U.S. and Euros 
government/corporate bonds.   
2 Traditional portfolio optimization yields the concentrated portfolio by which some assets never been enter the 
solution and few assets are included in the optimal portfolio composition.  Instability portfolio implies that for 
any small change in input parameters cause wide fluctuation in results. 
3 Diffuse Bayesian approach and non-informative prior belief Bayesian approach are terms used 
interchangeably.   
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2. Model and Methodology 
 
 Estimation risk in parameters of asset return can be treated appropriately under a Bayesian 
framework with either non-informative or informative prior distribution to shrink value of parameter 
estimate towards an equilibrium value, or grand mean.  The informative prior in this study is that all 
asset return characteristics comply with a factor model such as the single index model.  This means 
that, if asset characteristics based on historical average differ from the single index model, expected 
predictive returns will be drawn toward the expected return suggested by the factor model.  Six 
alternative approaches in constructing an optimal portfolio are explored.  The first is traditional 
portfolio selection treating historical estimates as true parameters.  The second alternative is an 
optimal portfolio based on Adjusted Beta as widely used in the industry4.  The third approach is 
Resampled Efficiency approach averaging optimal weights of the same ranked portfolio.  The fourth 
portfolio formation strategy is based on Capital Asset Pricing Model (CAPM).  The fifth strategy is 
traditional Single Index Model (SIM) allowing for asset mispricing.  The sixth alternative is an 
empirical Bayesian approach with an informative prior incorporating a factor model namely Bayesian 
Single Index Model (BSIM).  
 Given that an investor has T observations for each individual N traded assets.  Let   R be asset 
return matrix5 with dimension NT × , im  is a vector of expected returns of securities, and ∑  is a 

population variance-covariance matrix of security returns.  Alternative models discussed below 
suggest that, by specifying different beliefs in prior distribution, portfolio selection yields different 
results. 
 
Traditional Mean-Variance Approach, Resampled Efficiency Frontier (REF), Capital Asset Pricing 
Model (CAPM), and Traditional Single Index Model (SIM) Approach 
 
 Within a traditional mean-variance portfolio selection framework, sample estimates are 
treated as true parameters.   This approach can be called the certainty equivalence method, and 
estimation risk is not taken into account.  Hence, the sample mean vector and sample covariance 
matrix are major inputs in the portfolio optimization process as shown in Equations (1) and (2).   
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where:  im  = sample mean vector 

   S   = sample variance-covariance matrix 
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21 iTiii rrrR =′ = excess return of each individual asset 

   T  = number of observations 
   n  = number of assets 
   ι′  = (1, 1, …, 1) 

 
Resampled Efficiency Frontier (REF) generates observed asset returns by Monte Carlo approach 

from two major parameters given that asset returns follow multivariate normal distribution.  After 
each set of observed returns are generated, efficient frontier spanning from minimum variance 
portfolio to maximum return portfolio is constructed using traditional mean variance optimization 
approach.  One hundred and one portfolios are determined on each efficient frontier and 
corresponding allocated weights are recorded.  The distance between minimum and maximum returns 

                                                 
4 The common adjusted beta, as suggested by Merrill Lynch, is the weighted average between sample beta 
estimate and the market beta.  Adjusted beta = )(

3

1
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3

2
mi betabeta +  . 

5 Returns are calculated with both continuous (difference of log price) and discrete returns (ratio of adjusted 
price difference).  Results based on continuous and discrete return calculations are not different. 
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is equally split.  Repeating the same processes for 500 times6, we have 500 different sets of parameter 
inputs and 500 efficient frontiers.  The original set of inputs is denoted as and obtained 

input sets are denoted as , , . . ., .  Portfolios Ranked 1 are the 
minimum variance portfolio and portfolios ranked 101 are maximum return portfolios.  Averaging 
optimal weights of each ranked portfolio from 500 efficient frontiers, we obtain average resample 
weights.  Portfolio risk and return are calculated in the last step.        
 

Within the Capital Asset Pricing Model (CAPM) and a single index model approach, asset 
return generating process is stated as shown in equation (3) and (4), respectively. 
  

βmRR=         (3) 

UCRR m +=         (4) 

  
Where: R    = vector of expected excess return on each individual asset  

mtR  = vector of expected excess market index return  

β    = vector of beta coefficient  
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C  = coefficient vector 

),0(~ TINU ⊗Σ  = residual matrix containing residual term of each asset, iε  

TI    =  identity matrix with rank T 
 
Residual terms in matrix U are assumed to be independent, serially uncorrelated, and 

homoskedastic.  Two crucial parameters, expected return and variance-covariance matrix for an 
individual asset, in efficient portfolio formation are shown below:  
   

CRRE mi =)(         (5) 

  222

iimii εσβσβσ +′=       (6) 

  22

ijmiij εσβσβσ +′′=       (7) 

 Where: 2
iσ  = variance of an individual asset 

  2
mσ  = variance of market index portfolio 

  2

iε
σ  = variance of residual terms 

  ijσ  = covariance of two individual assets 

 
If market efficient hypothesis holds, alpha or the intercept term in the single index model will 

be zero.  When alpha has a non-zero value, it indicates mispricing for the set of traded assets.  
Portfolio managers can outperform the market by determining and investing in non-zero alpha assets.   
 
Bayesian Single Index Model (BSIM)   
 
 Within this framework, the objective is to determine posterior distribution7 of parameter 
estimates, likelihood function and prior distribution must be determined via the conjugate function.  
He (2007) suggests the selected conjugate function with return generating process is given by 
equation (8) and prior distribution of the coefficient vector, C, and the variance-covariance matrix, 
Σ , is given in equation (9) 

                                                 
6 Number of observed returns is 500 sets as suggested in Markowitz and Usmen (2003). 
7 Posterior ∝ Likelihood ×  Prior. 
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 Posterior distribution can be determined by collecting terms from the product of likelihood 
function and prior distribution as shown in equation (10) below: 
 

)()|(),|()|,( ΣΣΣ∝Σ pCpCRpRCp    (10) 

         }
~

)
~

(
~

)
~

[(
2

1
exp{|| 12

11 0

HCCVCCtr
NKT

+−′−−Σ∝ −
+++++

−
ν

 

   Where: )()(
~

0
1

0
11

0 RXCVXXVC ′+′+≡ −−−  

    11
0 )(

~ −− ′+≡ XXVV  

    CVCCXXCCVCSHH
~~ˆ~ 1

0
1

000
−− ′−′′+′++≡

)
 

 
 From the posterior distribution above, two indications can be made.  Given historical series of 
asset returns, firstly, joint distribution of two major parameters, )|,( RCp Σ , follows multi-variate 

normal distribution with posterior mean C
~

 and posterior variance V
~

⊗Σ .  Secondly, distribution of 
variance-covariance matrix, )|( Rp Σ , has an inverted-Wishart distribution with degree of freedom 

0
~ νν +=T  and a scale matrix H

~
. 

 Construct an optimal portfolio based on the single index model, if an investor has a strong 
belief that market is efficient and there is no mispricing, alpha will be zero and the model converges 
to the equilibrium model CAPM.  In real world, there are some rooms to make abnormal return by 
searching assets with nonzero alpha to capitalize on mispricing phenomenon.  Shrinkage Bayesian 
model presented in this paper suggests that if mispricing exists, estimation risk in parameter 
estimates, α  and β , should be taken into account by shrinking the two estimates to its equilibrium 
value with the Bayesian adjustment factor shown below: 
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To form a portfolio that incorporates estimation risk, we apply Bayesian concepts to alleviate 

the effect of estimation risk.  As discussed in Section 1, both informative and non-informative prior 
distributions are applied in constructing the optimal portfolio.  Incorporating estimation risk in a 
portfolio formation strategy would improve portfolio performance.  To validate this claim, an 
empirical test was performed.   
 
Portfolio Performance 

 
Two portfolio performance measurements are used in this study, namely expected utility and 

Sharpe’s Ratio.  The ultimate goal of an investor is maximizing one’s terminal wealth leading to 
maximize one’s expected utility.  The first portfolio performance measurement is stated below: 

 
Max. EU = E – λ(V)        (12) 

 
Where: EU = expected utility of each portfolio 
 E   = portfolio return 
            λ   = coefficient of degree of risk aversion; 0.5, 1, 2 
            V  = portfolio variance 

 
Given different level of degree of risk aversion, expected utility of each portfolio from each 

strategy will be assessed.  Among all portfolio formation strategies, portfolio possesses the highest 
expected utility is considered as the best performance portfolio. 

Since only two moments are used in constructing an optimal portfolio, the second portfolio 
performance measurement is Sharpe’s ratio.  The best strategy among six strategies will yield highest 
Sharpe’s ratio.  Ex ante portfolio performance measurements are compared to out-of-sample ex post 
portfolio performance measurements.  The better portfolio formation strategy leads to a higher 
expected utility and Sharpe’s ratio for both in- and out-of-sample data.   
 
3. Data and Descriptive Statistics 
 

Data used in this study are monthly index returns of 19 emerging markets8 adjusted for 
dividend and emerging market price index9.  Data are obtained from Data Stream.  Nineteen emerging 
countries with complete data are Argentina, Brazil, Chile, China, Columbia, Hungary, India, 
Indonesia, Malaysia, Mexico, Pakistan, Peru, the Philippines, Poland, Russian Federation, South 
Africa, Taiwan, Thailand, and Turkey.  Quotations of each market index are based on the same 
currency, U.S. dollar.  Periods covered in this study incorporate long range of time from 1995 to 2008 
which incorporates global crises.  Divided into two sub-periods, 1995-2001 and 2002-2008, had 
covered global financial crises10.  Sample period are total sample period, and two sub-periods.  Total 
sample period ranges from January 1995 to December 2008.  The first sub-period ranges from 
January 1995 to December 2001 and the second sub-period ranges from January 2002 to December 
200811.   

                                                 
8 List of countries in emerging markets bases on FTSE emerging market list. 
9 Emerging market price index is obtained from Data Stream under DS Mnemonic TOTMKEK in U.S. dollar 
unit. 
10 Global financial crises covered the followings events, Asian financial crisis in 1997, Long Term Capital 
Management (LTCM) crisis in Japan and Russia in 1998, IT bubble burst and dot com crisis in 2000, 
bankruptcy scandal of ENRON in late 2001, bond market crisis in 2003, and US subprime crisis in 2008, etc. 
11 Thank you for comments from reviewers regarding hyperinflation in some emerging markets during periods 
1990s and price jumps during crisis period.  Since samples in this study are total market adjusted price indexes, 
considered as big portfolios containing large amount of assets, and index returns are calculated in percentage 
during long range of time.  Therefore, hyperinflation in some emerging markets has insignificant effect on 
market return indexes.  Moreover, objective of this study is to point out that by incorporating new information, 
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Descriptive statistics are in Panel A and B of TABLE 112.  Panel B reports information 

ratio,
2

i

i

ασ
α

, of each country for all periods studied.  Descriptive results from Panel A indicate that all 

emerging markets exhibit non-zero alpha with positive beta coefficient.  Only a few countries with 
non-zero alpha are statistically significantly different from zero while all beta coefficients are 
statistically significantly different from zero.  This could be interpreted that emerging markets risk 
and expected return relationship conforms to modern portfolio theory and there is mispricing in some 
emerging countries.  Fund managers can insert their own belief in determining mispricing countries 
and recognize the abnormal return from such portfolio formation strategy.  Moreover, the average 
returns in each sub-period are not significantly different.  Based on total sample period, average 
monthly index returns range from -0.44 percent to 3.35 percent, from -1.15 percent to 5.79 percent for 
the first sub-period, and from -0.72 percent to 1.95 percent for the second sub-periods.  Unlike 
average index return, standard deviations or risk levels for each country are significantly different and 
larger than average return.  Based on total sample index return, standard deviations range from 4.79 
percent to 15.59 percent, from 5.67 percent to 19.33 percent in the first sub-period, and from 3.72 
percent to 10.37 percent in the second sub-period.  

The information ratio, as shown in Panel B, indicates that the mispricing of each country is 
large as each value differs from zero considerably.  For the total sample period, information ratio 
ranges from -136.796 (Taiwan) to 703.11 (Mexico), from -133.575 (Colombia) to 467.17 (South 
Africa) for the first sub-period, and from -602.626 (Taiwan) to 462.27 (Colombia).  It can be 
observed that the spread of variation of information ratio was wider in the second sub-period 
reflecting the recent subprime financial crisis.  The high value of the information ratio is the 
characteristic which indicates that the shrinkage Bayesian would apply. 

     
4. Empirical Evidence 
 

Theoretically, an ideal estimator would yield the same result as the true or future observed 
value.  The only situation in which an ideal estimator would exist is when there is perfect information 
for an estimated parameter.  Practically, an ideal estimator is impossible due to lack of perfect 
information.  Thus, a good estimator is the best that can be expected.  The six different estimating 
strategies are: traditional mean-variance (EV), Adjusted Beta (AB), Resampled Efficient Frontier 
(REF), Capital Asset Pricing Model (CAPM), Single Index Model (SIM), and Single Index Model 
incorporating shrinkage Bayesian factor namely Bayesian Single Index Model (BSIM).   

In this study, the realized or observed industrial index return is treated as the true average 
return.  Estimation error or mean squares forecast error is defined as the difference between true 
average return and estimated mean return for each sector.  Estimated values from each strategy are 
defined as ex ante estimates and observed or realized returns are defined as ex post values. 

 For each period, optimal weights are computed for each strategy.  Ex ante portfolio return is 
computed for the following out of sample month.  The first sub-period, ranging from January 1995 to 
December 2001, is the base window for the optimal weights of the first period.  Ex ante portfolio 
returns are computed and recorded for the next period, which is January 2002.  Observed out of 
sample or ex post return in January 2002 for each country is recorded based on the optimal weights 
from the ex ante portfolio.  The same process is repeated for the second sub-period ranges from 
January 2002 to December 2008.  The ex post return is out of the sample observed in January 2009.  
From these ex ante and realized monthly returns and average portfolio risk, the expected utility and 
Sharpe’s ratios of those portfolios are compared.  A better portfolio strategy would yield a higher 
expected utility and Sharpe’s ratio and lower differences between ex ante and ex post average values.   

                                                                                                                                                       
price jumps during financial market crises, in asset pricing via Bayesian adjusted factor could improve portfolio 
performance.  
12 Emerging market indexes are drawn from Data Stream, DS-TOTMK, which are available during 1990s with 
the same base of 100. 



 

8 

TABLE 1: Descriptive Statistics of index returns.  Three periods are explored, total period ranges from January 1995 to December 2008, the first sub-period ranges from 
January 1995 to December 2001, and the second sub-period ranges from January 2002 to December 2008.  Numbers in parentheses are t-statistics. 

Panel A 
  

Alpha 
  

  
Beta 

  

  
F-Stat 

  

  
Average Return 

  

  
Standard Deviation 

  
Country 

Total 
Period 

First Sub-
period 

Second Sub-
period 

Total 
Period 

First Sub-
period 

Second Sub-
period 

Total 
Period 

First Sub-
period 

Second 
Sub-
period 

Total 
Period 

First Sub-
period 

Second 
Sub-
period 

Total 
Period 

First 
Sub-
period 

Second 
Sub-
period 

0.03344***  0.06640***  0.00389 1.04746***  1.24056***  0.95713***  
Turkey  (-3.15) (-3.47) (-0.43) (-6.75) (-4.48) (-7.16) 

45.00*** 20.07*** 51.29*** 3.35% 5.79% 0.98% 15.59% 19.34% 10.37% 

0.01905***  0.03654***  0.00372 1.37491***  1.64265***  1.14265***  Russian 
Federation  (-2.39) (-2.56) (-0.54) (-11.83) (-7.95) (-11.12) 

135.70*** 63.23*** 123.66*** 1.92% 2.53% 1.08% 14.01% 17.20% 9.91% 

0.00953* 0.02532* -0.00442 0.79591***  0.86536***  0.76185***  
Hungary  (-1.71) (-1.71) (-0.91) (-9.82) (-5.99) (-10.56) 

93.12*** 35.99*** 111.49*** 0.96% 1.94% 0.03% 9.06% 10.83% 6.75% 

0.00894***  0.01418***  0.00593* 0.69188***  0.80156***  0.58642***  
Mexico  (-2.51) (-2.23) (-1.82) (-13.30) (-8.70) (-12.07) 

171.37*** 75.67*** 145.71*** 0.90% 0.87% 0.96% 6.64% 8.00% 4.93% 

0.00892***  0.01287**  0.00643 0.88102***  0.98651***  0.80493***  
Brazil  (-2.29) (-1.95) (-1.52) (-15.49) (-10.31) (-12.76) 

241.00*** 106.19*** 162.82*** 0.90% 0.61% 1.14% 7.89% 9.08% 6.64% 

0.00781 0.00479 0.00869 0.90282***  0.79943***  0.99837***  
China  (-1.08) (-0.37) (-1.20) (-8.52) (-4.30) (-9.22) 

69.44*** 18.30*** 85.04*** 0.79% -0.07% 1.49% 11.30% 12.93% 9.41% 

0.00648***  0.01084***  0.00366 0.67337***  0.74886***  0.59815***  
South Africa  (-2.09) (-2.25) (-0.92) (-14.88) (-10.73) (-10.10) 

213.13*** 115.15*** 102.03*** 0.65% 0.57% 0.74% 6.14% 6.77% 5.40% 

0.00564 0.00055 0.00849 0.78962***  0.59681***  0.98873***  
India  (-1.13) (-0.07) (-1.43) (-10.80) (-5.12) (-11.13) 

113.41*** 26.21*** 123.91*** 0.57% -0.35% 1.46% 8.48% 8.38% 8.57% 

0.00526 0.01573 -0.00379 0.71096***  0.72058***  0.71894***  
Poland  (-0.91) (-1.50) (-0.76) (-8.45) (-4.73) (-9.67) 

68.66*** 22.42*** 93.56*** 0.53% 1.08% 0.07% 8.95% 10.75% 6.62% 

0.00494 0.00347 0.00586 0.78745***  0.75247***  0.81547***  
Indonesia  (-0.82) (-0.32) (-1.01) (-8.91) (-4.74) (-9.46) 

75.96*** 22.49*** 89.44*** 0.50% -0.17% 1.09% 9.56% 11.21% 7.59% 

0.00493 -0.00724 0.01628***  0.43162***  0.33934***  0.51276***  
Columbia  (-1.04) (-0.98) (-2.74) (-6.24) (-3.18) (-5.80) 

39.20*** 10.12*** 33.63*** 0.50% -0.96% 1.95% 6.84% 7.07% 6.39% 

0.00434 0.00131 0.0058 0.51444***  0.44296***  0.56970***  
Peru  (-1.08) (-0.21) (-1.13) (-8.76) (-4.80) (-7.47) 

72.47*** 23.05*** 55.73*** 0.44% -0.17% 0.93% 6.31% 6.54% 6.02% 

0.00359 -0.00085 0.00701 0.46288***  0.53493***  0.34748***  
Pakistan  (-0.46) (-0.07) (-0.73) (-4.06) (-2.93) (-2.43) 

15.16*** 8.59*** 5.91*** 0.36% -0.45% 0.92% 10.63% 12.01% 9.01% 

0.0033 0.00885 0.00422 0.78993***  1.01402***  0.59031***  
Argentina  (-0.54) (-0.85) (-0.70) (-8.82) (-6.70) (-6.58) 

81.50*** 44.89 43.36 0.34% 0.19% 0.79% 9.65% 11.78% 6.75% 

0.0001 -0.00123 0.00392 0.45985***  0.59743***  0.32677***  
Chile  (-0.04) (-0.29) (-1.19) (-11.38) (-9.62) (-6.63) 

132.26 92.45*** 43.97*** 0.01% -0.53% 0.60% 4.79% 5.67% 3.72% 

-0.00165 0.00279 -0.00245 0.66056***  0.90756***  0.44679***  
Malaysia  (-0.34) (-0.32) (-0.78) (-9.43) (-7.14) (-8.80) 

92.46*** 51.01*** 77.43*** -0.16% -0.34% 0.03% 7.72% 10.13% 4.31% 

-0.00254 0.00699 -0.01154***  0.83599***  1.00786***  0.69489***  
Taiwan  (-0.59) (-0.97) (-2.64) (-13.29) (-9.67) (-10.66) 

177.67*** 93.60*** 113.59*** -0.25% 0.01% -0.72% 8.02% 9.54% 6.13% 

-0.00256 -0.00183 -0.00085 0.63556***  0.85783***  0.41319***  
Philippines  (-0.55) (-0.24) (-0.16) (-9.41) (-7.87) (-5.33) 

87.64*** 62.00*** 28.44*** -0.25% -0.77% 0.17% 7.44% 9.03% 5.47% 

-0.00453 -0.00394 -0.00248 0.93898***  1.10057***  0.81091***  
Thailand  (-0.70) (-0.34) (-0.43) (-9.98) (-6.50) (-9.55) 

101.92*** 42.22*** 91.16*** -0.44% -1.15% 0.26% 10.57% 13.05% 7.51% 

*, **, and *** indicates significant at 10%, 5%, and 1%, respectively. 
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TABLE 1(continued): Descriptive Statistics of index returns.  Three periods are explored, 
total period ranges from January 1995 to December 2008, the first sub-period ranges from 
January 1995 to December 2001, and the second sub-period ranges from January 2002 to 
December 2008.  Numbers in parentheses are t-statistics. 

 
Panel B 

  
Information Ratio 

Country Total Period First Sub-period Second Sub-period 
Turkey  295.7651 181.6571 48.3165 
Russian Federation  300.5328 179.6849 78.2327 
Hungary  308.6629 255.3434 -188.4281 
Mexico  703.1102 350.4998 557.6252 
Brazil  587.5088 294.6973 358.7845 
China  148.1109 28.7707 164.5916 
South Africa  674.1654 467.1711 231.4469 
India  224.6173 8.5055 239.0569 
Poland  158.2308 142.5708 -152.1374 
Indonesia  134.6862 28.8828 174.9011 
Columbia  219.6666 -133.5755 462.2749 
Peru  268.1393 32.2578 221.1845 
Pakistan  58.9806 -5.3772 76.1875 
Argentina  87.5264 81.0338 116.5557 
Chile  13.5179 -66.9743 358.3304 
Malaysia  -71.5389 36.3157 -210.6151 
Taiwan  -136.7961 135.1681 -602.6266 
Philippines  -119.5397 -32.4259 -31.299 
Thailand  -109.0524 -28.7929 -76.1938 

 
TABLE 2 shows that every portfolio strategy always overestimates true parameter values.  Ex 

ante average excess portfolio returns are higher than those of ex post averages for all strategies.  
Except the first sub-period, portfolios formed by adjusted beta approach (AB), Resampled Efficiency 
Frontier (REF), market equilibrium hypothesis approach (CAPM) and Bayesian approach (BSIM) 
outperform the forecast.  Ex ante excess portfolio returns are expected to be -0.47 percent, 2.32 
percent, -0.36 percent, and 2.67 percent per month for portfolios formed by AB, REF, CAPM, and 
BSIM, respectively whereas the ex post excess portfolio returns are 1.50 percent, 3.01 percent, 1.50 
percent, and 3.08 percent per month.  The Bayesian Shrinkage Portfolio incorporating single index 
model strategy (BSIM) is expected to have the largest average excess portfolio return compared with 
other strategies.  Ex ante average excess portfolio returns for BSIM are 2.39 percent per month or 
28.68 percent per annum, 2.67percent per month or 32.04 percent per annum, and 2.70 percent per 
month or 32.40 percent per annum in total period, the first sub-period, and the second sub-period, 
respectively.  The lowest ex ante average excess portfolio returns are portfolio constructed based on 
CAPM in all studies periods.  Ex post average excess portfolio return for the BSIM portfolio 
outperforms those of other strategies in total sample period and the first sub-period.  For total sample 
period, BSIM yields minimum loss of 1.07 percent per month or loss of 12.84 percent per annum 
whereas ex post returns of other strategies yield larger loss ranges from 2.31 percent per month or 
27.72 percent per annum (CAPM strategy) to 5.43 percent per month or 65.16 percent per annum (EV 
strategy).   
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TABLE 2: Portfolio Performance of Alternative Estimation Methods: Sharpe’s Ratio 
 

Monthly Excess Portfolio Return  

Ex-ante Ex-post Strategy 

Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) 
Mean-Variance 1.84% 2.74% 1.26% -5.43% -6.38% -1.46% 

AB -0.02% -0.47% -0.44% -2.31% 1.50% -2.47% 
REF 2.04% 2.32% 1.21% -2.84% 3.01% -1.44% 

CAPM -0.02% -0.36% 0.54% -2.31% 1.50% -2.80% 
SIM 1.94% 2.42% 1.27% -3.44% -4.03% 1.65% 

BSIM 2.39% 2.67% 2.70% -1.07% 3.08% -3.21% 
Monthly Excess Portfolio Risk 

Ex-ante Ex-post Strategy 
Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) 

Mean-Variance 8.84% 10.56% 4.36% 0.93% 1.37% 0.20% 
AB 2.75% 3.39% 2.01% 2.75% 7.73% 3.37% 
REF 0.29% 0.25% 0.19% 1.05% 0.87% 1.38% 

CAPM 2.75% 3.39% 3.60% 2.75% 7.73% 3.37% 
SIM 9.22% 10.85% 5.96% 9.21% 10.77% 5.26% 

BSIM 7.59% 9.22% 5.27% 7.56% 9.18% 5.26% 
 Sharpe’s Ratio 
 Ex-ante  Ex-post  

Strategy Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) 
Mean-Variance 0.1949 0.2189 0.2824 -10.1536 -1.5029 -10.4492 

AB -0.0093 0.2410 0.2038 -1.1015 -1.6834 -0.3573 
REF 0. 2089 0.2622 0.3830 -0.3681 0.1648 -0.9629 

CAPM -0.0075 -0.1337 0.1974 -1.1015 0.3107 -1.2359 
SIM 0.2038 0.2067 0.2113 -0.3573 -0.3198 0.3127* 

BSIM 0.3147* 0.2900*  0.5111* -0.1409* 0.3357* -0.6091 
Note: Ex ante and ex post portfolio monthly return and risk are reported.  Total sample periods range from January 1995 to December 2008.  Two out-of-
sample periods are January 1996 and January 2009.   
* denotes the highest Sharpe’s Ratio compared among different portfolio strategies. 
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TABLE 3: Portfolio Performance of Alternative Estimation Methods: Expected Utility  
 
 

Expected Utility 

Total Period (TP) Sub-Period 1 (SP1) 

Strategy A = 0.5 A = 1 A = 2 A = 0.5 A = 1 A = 2 

Mean-Variance 0.00553 0.00196 -0.00265 0.00452 0.00021 -0.00641 
AB -0.00052 -0.00076 -0.00125 -0.00546 -0.00607 -0.00691 
REF 0.00445 0.00088 -0.00368 0.00239 -0.00206 -0.00820 

CAPM -0.00048 -0.00072 -0.00118 -0.00419 -0.00494 -0.00593 
SIM 0.00603 -0.00149 -0.01288 0.00721 -0.00157 -0.01845 

BSIM 0.06309* 0.05967* 0.05283* 0.06488* 0.06001* 0.05026* 

       

       

Expected Utility    

Sub-Period 2 (SP2)    

Strategy A = 0.5 A = 1 A = 2    

Mean-Variance 0.01683 0.01376 0.00865    

AB 0.00627 0.00577 0.00511    

REF 0.01317 0.01083 0.00669    

CAPM 0.00658 0.00594 0.00512    

SIM 0.01690 0.01350 0.00669    

BSIM 0.06736* 0.06547* 0.06170*    

* denotes the highest Expected Utility given three different risk aversion level (A), A = 0.5,1, and 2, compared among different portfolio strategies. 
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Among six portfolio formation strategies, traditional portfolio approach (EV) has the 
largest variation as its monthly excess portfolio risk fluctuates widely while other formation 
strategies have intact ex ante and ex post portfolio risk.  As documented, the ex ante monthly 
portfolio risk of EV portfolios are ranges from 8.84 percent, 10.56 percent, and 4.36 percent to 
0.93 percent, 1.37 percent, and 0.20 percent in total sample period, the first sub-period, and the 
second sub-period, respectively.  The lowest deviation between ex ante and ex post average 
excess portfolio risk is that of BSIM.   

The Bayesian Single Index Model (BSIM) or Bayesian Portfolio incorporating a factor 
model performs best on an ex ante and ex post basis.  From ex ante Sharpe’s Ratio, BSIM 
produces the largest Sharpe’s Ratio and the portfolio constructed based on CAPM approach has 
the lowest ratio.  BSIM’s ex ante Sharpe’s Ratios are the largest at 0.31, 0.29, and 0.511 in the 
total sample period, first sub-period, and second sub-period, respectively.  The traditional mean-
variance efficient portfolio approach (EV) yields the lowest Sharpe’s Ratio of -10.15, -1.50, and 
-10.45 based on ex post average in each of sample period.  Among optimized portfolio 
strategies, it can be concluded that the ex post performance of the Bayesian portfolio approach 
exceeded that of the traditional approach.   

An alternative measure of portfolio performance is the expected utility taking into 
account portfolio risk, return, and degree of risk aversion.  Three degrees of risk aversion are 
used to explore effect of investor’s risk preference on portfolio performance.  The higher the 
expected utility indicates the better performance of a portfolio.  Table 3 exhibits maximum 
expected utility from different portfolio formation strategy given different degree of risk 
aversion (A), A = 0.5, 1, and 2.  Portfolios constructed by BSIM approach yield the highest 
expected utility for all levels of risk aversion degrees.  Results from Table 3 reassure that 
allowing for mispricing in asset prices in Bayesian portfolio formation strategy; BSIM 
portfolios outperform those of traditional approach.   
 
5. Conclusion 
 

Empirical results indicate that when estimation uncertainty is taken into account, the 
shrinkage Bayesian strategy incorporating single index model (BSIM) outperforms the 
Traditional portfolio selection strategy such as mean-variance efficient, Adjusted Beta model, 
Resampled Efficient Frontier model, CAPM, and single index model based on both ex ante and 
ex post performance.  This study not only demonstrates the benefits from using shrinkage 
estimators to alleviate estimation uncertainty problem but also suggests an appropriate portfolio 
selection strategy, namely an optimized portfolio incorporating a single index model or BSIM.  
Shrinkage Bayesian model presented in this paper suggests that if mispricing exists, estimation 
risk in parameter estimates, α  and β , should be taken into account by shrinking the two 
estimates to its equilibrium value with the Bayesian adjustment factor.  The major contribution 
of this study is that allowing for asset mispricing and applying Bayesian shrinkage adjusted 
factor to each asset’s alpha given that alpha will be shrunk toward market equilibrium condition 
or at zero alpha value, a single factor namely excess market return is adequate in alleviating 
estimation uncertainty.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

13 

 
References 
 
Barry, C. (1974) Portfolio analysis under uncertain means, variances, and covariances. Journal 
of Finance, 29, 515 – 522. 
Barry, C. & Robert, L. (1976) Nonstationarity and portfolio choice. Journal of Financial and 
Quantitative Analysis, 11, 217-235.  
Bawa, V. (1976) Admissible portfolios for all individuals. Journal of Finance, 31, 1169 – 1183. 
Beasel, J. (1974) On the assessment of risk: Some further considerations. Journal of Finance 
29, 1491-1494. 
Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis. New York: Springer-
Verlag. 
Bernstein, P. (2004) The Great Alpha Tree. Journal of Portfolio Management, 30, 315-342. 
Black, F. & Litterman, R.B. (1992) Global Portfolio Optimization. Financial Analysts Journal, 
48, 28-43. 
Blume, M. (1971) On the assessment of risk. Journal of Finance, 26, 1-10. 
Blume, M. (1973) A new look at the Capital Asset Pricing Model. Journal of Finance, 28, 19-
33. 
Britten-Jones, M. (1999) The sampling error in estimates of mean-variance efficient portfolio. 
Journal of Finance, 54, 655-671. 
Brown, S. (1979) The effect of estimation risk on capital market equilibrium. Journal of 
Financial and Quantitative Analysis, 14, 215-220. 
Chen, S. & Brown, S. (1983) Estimation risk and simple rules for optimal portfolio selection. 
Journal of Finance, 38, 1087-1093. 
Clarence, C. & Kwan, Y. (1984) Portfolio analysis using single index, multi-index and constant 
correlation models: A unified treatment. Journal of Finance, 39, 1469-1483 
Chopra, C. & Ziemba, W. (1993) The effect of errors in means, variances, and covariances on 
optimal portfolio choice. Journal of Portfolio Management, 19, 6-11. 
Chuhachinda, P., Danpani, K., Hamid, S., & Prakash, A. (1997) Portfolio selection and 
skewness: Evidence from international stock markets. Journal of Banking & Finance, 21, 143 – 
167. 
Chunhachinda, P. (1997) Performance measure of global stock markets when return 
distributions are asymmetric. International Journal of Business Research, 12, 19 – 37. 
Clarkson, P. & Thompson, R. (1990) Empirical estimates of beta when investors face estimation 
risk. Journal of Finance, 45, 431-453. 
Clarkson, P., Guedes, J., & Thompson, R. (1996) On the diversification, observability, and 
measurement of estimation risk. Journal of Financial and Quantitative Analysis, 31, 69-84. 
Cohen, K. & Pogue, J. (1967) An empirical evaluation of alternative portfolio-selection models. 
Journal of Business, 60, 166-193. 
Farr, D. (2006) Exploring the Dimensions of Active Management. Journal of Portfolio 
Management, 33, 31-36. 
Fernandes, J.L.B., and J.R.H. Ornelas (2009) Minimising Operational Risk in Portfolio 
Allocation Decisions. Journal of Risk Management in Financial Institution, 2, 438-450. 
Frost, P. & Savarino, J. (1986) An empirical Bayes approach to efficient portfolio selection. 
Journal of Financial and Quantitative Analysis, 21, 293-305. 
He, Z. (2007) Incorporating alpha uncertainty into portfolio decisions: A Bayesian revisit of the 
Treynor-Black model. Journal of Asset Management, 8, 161-175. 
Horst, J., Roon, F. and Werker, B. (2002) Incorporation Estimation Risk in Portfolio Choice. 
Tilburg University, Center for Economic Research Discussion Paper No. 65. 
http://papers.ssrn.com/sol3/paper.cfm?abstract_id=244695. 
Jorion, P. (1986) Bayes-Stein estimation for portfolio analysis. Journal of Financial and 
Quantitative Analysis, 21, 279 – 292. 
Jorion, P. (1991) Bayesian and CAPM estimators of the means: Implications for portfolio 
selection. Journal of Banking and Finance, 15, 717-72. 
Jobson, J.D., and B. Korkie (1980) Estimation or Markowitz Efficient Portfolios. Journal of the 
American Statistical Association, 75, 544-554. 



 

14 

Kalymon, B. (1971) Estimation risk and portfolio selection model. Journal of Financial and 
Quantitative Analysis, 6, 559-582. 
Karolyi, A. (1993) A Bayesian approach to modeling stock return volatility for option valuation. 
Journal of Financial and Quantitative Analysis, 28, 579 – 594. 
Klein, R. & Bawa, V. (1976) The effect of estimation risk on optimal portfolio choice. Journal 
of Financial Economics, 3, 215 – 231. 
Ledoit, O. & Wolf, M. (2003) Improved estimation of the covariance matrix of stock returns 
with an application to portfolio selection. Journal of Empirical Finance, 10, 603-621 
Markowitz, H. (1952) Portfolio selection. Journal of Finance, 7, 77-91. 
Markowitz, H. and N. Usmen (2003) Resampled Frontiers Versus Diffuse Bayes: An 
Experiment. Journal of Investment Management, 1, 9-25. 
Michaud, R. and R. Michaud (2008) Estimation Error and Portfolio Optimization: A 
Resampling Solution. Journal of Investment Management, 6, 8-28. 
Michaud, R. (1998) Efficient Asset Management. New York: Harvard Business School Press. 
Nathaphan, S. (2007) An empirical Study on Effect of Estimation Risk on Portfolio Risk.  
Journal of Business Administration, 57 – 80. 
Pastor, L. (2000) Portfolio selection and asset pricing models. Journal of Finance, 55, 179 – 
223. 
Polson, N. & Tew, B. (2000) Bayesian portfolio selection: An empirical analysis of the S&P 
500 index 1970 – 1996. Journal of Business & Economic Statistics, 18, 164 – 173. 
Scherer, B. (2002) Portfolio Resampling: Review and Critique. Financial Analysts Journal,58, 
98-109. 
Sharpe, W. (1964) Capital asset prices: A theory of market equilibrium under condition of risk. 
Journal of Finance, 19, 425 -442. 
Treynor, J. L. & Black, F. (1973) How to use security analysis to improve portfolio selection. 
Journal of Business, 46, 66-88. 
Vasicek, O. (1973) A note on using cross-sectional information in Bayesian estimation of 
security beta. Journal of Finance, 28, 1233-1239. 
Winkler, R. (1973) Bayesian models for forecasting future security prices. Journal of Financial 
and Quantitative Analysis, 3, 387-406.  
Waring, B.M. & Siegel, L.B. (2003) The Dimensions of Active Management. Journal of 
Portfolio Management, 29, 35-51. 
Winkler, R. & Barry, C. (1975) A Bayesian model for portfolio selection and revision. Journal 
of Finance, 30, 179-192. 
Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York: John 
Wiley & Sons. 
 



 

1 

Estimation Risk Modeling in Optimal Portfolio Selection: An Empirical Study from 
Emerging Markets∗∗∗∗ 

 
Sarayut Nathaphana, Mahidol University International College 
Pornchai Chunhachindab, Thammasat Business School 

 
Abstract 

Efficient portfolio is a portfolio that yields maximum expected return given a level of risk or 
has minimum level of risk given a level of expected return.  However, the optimal portfolios seem not 
being as efficient as intended.  Especially during financial crisis period optimal portfolio is not an 
optimal investment as it does not yield maximum return given a specific level of risk, vice and versa.  
One possible explanation for an unimpressive performance of the seemingly efficient portfolio is 
incorrectness in parameter estimates called “estimation risk in parameter estimates”.  Six different 
estimating strategies are employed to explore ex post portfolio performance when estimation risk is 
incorporated.  These strategies are traditional mean-variance (EV), Adjusted Beta (AB) approach, 
Resampled Efficient Frontier (REF), Capital Asset Pricing Model (CAPM), Single Index Model 
(SIM), and Single Index Model incorporating shrinkage Bayesian factor namely Bayesian Single 
Index Model (BSIM).  Among the six alternative strategies, shrinkage estimators incorporating the 
single index model outperforms other traditional portfolio selection strategies.  Allowing for asset 
mispricing and applying Bayesian shrinkage adjusted factor to each asset’s alpha, a single factor 
namely excess market return is adequate in alleviating estimation uncertainty.   
 
Keywords: estimation risk, parameter uncertainty, Bayesian portfolio, efficient portfolio, Single 
Index Model 
 
1. Introduction 
 

Efficient portfolio is a portfolio that yields maximum expected return given a level of risk or 
has minimum level of risk given a level of expected return.  Traditional efficient portfolio and its 
extension incorporating single factor model as suggested by Markowitz (1952), Sharpe (1963), and 
Elton, Gruber, Padberg (1976), and Michaud (1998) had been explored and implemented in active 
portfolio management.  Optimal portfolio or the active portfolio is determined at the tangency of the 
capital allocation line and the efficient frontier.  Portfolio or asset allocation came into play dividing 
individual wealth investing in three investment choices.  The first choice of investment is an active 
portfolio, the second is the market index portfolio or passive portfolio, and the third is riskless asset or 
cash.  However, performance of an investment strategy recommended by a fund manager, mostly, is 
not impressive.  Especially during financial crisis period, optimal portfolio is not an optimal 
investment as intended.  One possible explanation for an unimpressive performance of the seemingly 
efficient portfolio is incorrectness in parameter estimates called “estimation risk in parameter 
estimates”.  Two crucial parameters in an efficient portfolio construction are expected return and 
variance-covariance matrix.  Estimation risk in portfolio formation causes by treating sample 
estimates as true parameters.  This paper aims at taking estimation risk in parameter estimates into 
account when construct an efficient frontier using empirical Bayesian shrinkage incorporating single 
factor (index) model and comparing Bayesian portfolio’s performance with other portfolio formation 
strategies during two financial crisis periods. 

Various studies in the past can be divided into three groups.  The first group conducted their 
studies based on historical data ignoring estimation risk.  This group includes Markowitz (1952), 
Sharpe (1964), Kraus and Litzenberger (1976), Kroll, Levy and Markowitz (1984), and 
Chunhachinda et al. (1997a and 1997b).  The second group of studies took estimation risk into 
account by proposing a Bayesian or resample efficient frontier approach using historical data together 
with Monte Carlo estimation process; for example, Stein (1962), Kalymon (1971), Barry (1974), 
Klein and Bawa (1976), Brown (1979), Chen and Brown (1983), Jorion (1986), Horst, et.al (2002), 
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Markowtiz and Usmen (2003), and Michaud (2003).  The third group focused on the asset pricing 
approach by incorporating a factor model such as the Capital Asset Pricing Model (CAPM) and/or 
Arbitrage Pricing Theory (APT) in the portfolio selection process, e.g., Polson and Tew (2000), and 
Pastor (2000).  The third group uses a factor model to benchmark the performance of a recommended 
portfolio.  Portfolio optimization is performed based on historical data to estimate two crucial 
parameters of the model, namely expected return and variance-covariance matrix.  Estimation risk 
due to treating sample estimates as true parameters had been taken into account in optimal portfolio 
formation via Bayesian Portfolio Optimization process.   

Studies regarding the effect of estimation risk on an optimal portfolio have been conducted 
by a lot of scholars.  Barry (1974) stated that estimation risk does not change the efficient set but will 
affect the optimal portfolio.  Bawa, Brown, and Klein (1979) and Klein and Bawa (1977) stated that, 
when estimation risk is taken into account, assuming that security returns are generated by a 
stationary multivariate normal distribution for which the investor has a diffuse prior, the effects of 
estimation risk on the selection of an optimal portfolio from a set of risky assets cause the location, 
but not the composition of the efficient frontier to change.  Frost and Savarino (1986) suggested 
portfolio selection within a Bayesian framework to deal with estimation risk and stated that using 
classical mean to estimate expected return and other moments of asset returns leads to suboptimal 
portfolio choices resulting in a loss of investor utility.  Jorion (1986) indicated that uncertainty about 
parameter values leads to suboptimal portfolio choices resulting in a loss in utility if historical 
average is used as a true parameter estimate.  As documented in Jorion (1986, 1991), the James-Stein 
estimator is derived from the summation of components of a quadratic loss function using a shrinkage 
function to estimate parameter values and is used to validate the claim that sample mean is an 
inadmissible estimator.  Effron and Morris (1973) have proven that the James-Stein estimator 
dominates MLE with good rules of Bayesian properties.  Jorion (1986, 1991) extended the work of 
James-Stein to a Bayes-Stein shrinkage mean assuming variance parameters are known.   

Britten-Jones (1999) used 20 years of data on 11 country stock indexes to test hypotheses 
about the weights of mean-variance efficient portfolios.  The evidence documented that sampling 
error in estimates of the weights of global efficient portfolios is as large as when the return vector and 
variance-covariance matrix are estimated by a traditional approach.  This means that the portfolio 
risks of the traditionally suggested efficient portfolios will be underestimated compared with that of 
optimal portfolio incorporating estimation risk.  Taking estimation uncertainty in portfolio 
construction process, Michaud (1998) proposed Resample EfficienyTM technique introducing Monte 
Carlo methods based on eight asset classes1 of 18 years historical data.  Resampled Efficiency 
approach solved two major drawbacks of traditional portfolio namely concentrated and instability 
portfolios2.  Markowitz and Usmen (2003) performed experiment on portfolio performance between 
resampled and diffuse Bayes portfolios and reported that resampled efficient portfolios outperform 
those of diffuse Bayes3 portfolios.  He (2007) revised an information updating model of Treynor and 
Black (1973) within a Bayesian framework accounting for alpha uncertainty.  By varying level of 
overall active risk budget and centering alpha on its equilibrium level of zero, the result indicated that 
pension fund managers can reflects the overall confidence in the ability of active management.  
However, no recommendation for a better portfolio formation strategy had been made.    

This study emphasizes investigating and suggesting an appropriate portfolio formation 
strategy by applying Bayesian shrinkage estimation to portfolio selection when uncertainty about 
parameter values exists.  Two major portfolio formation strategies are i) optimized portfolio within a 
traditional mean-variance efficient and ii) optimized portfolio applying shrinkage asset return 
incorporating a factor model approach.  Model and methodology are discussed in Section 2.  The data 
and descriptive statistics of sectorial returns are discussed in Section 3.  Section 4 elaborates 
empirical evidences.  The last section is the conclusion. 
 

                                                 
1 Eight asset classes are Canada, France, Germany, Japan, U.K., U.S. equities, and U.S. and Euros 
government/corporate bonds.   
2 Traditional portfolio optimization yields the concentrated portfolio by which some assets never been enter the 
solution and few assets are included in the optimal portfolio composition.  Instability portfolio implies that for 
any small change in input parameters cause wide fluctuation in results. 
3 Diffuse Bayesian approach and non-informative prior belief Bayesian approach are terms used 
interchangeably.   
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2. Model and Methodology 
 
 Estimation risk in parameters of asset return can be treated appropriately under a Bayesian 
framework with either non-informative or informative prior distribution to shrink value of parameter 
estimate towards an equilibrium value, or grand mean.  The informative prior in this study is that all 
asset return characteristics comply with a factor model such as the single index model.  This means 
that, if asset characteristics based on historical average differ from the single index model, expected 
predictive returns will be drawn toward the expected return suggested by the factor model.  Six 
alternative approaches in constructing an optimal portfolio are explored.  The first is traditional 
portfolio selection treating historical estimates as true parameters.  The second alternative is an 
optimal portfolio based on Adjusted Beta as widely used in the industry4.  The third approach is 
Resampled Efficiency approach averaging optimal weights of the same ranked portfolio.  The fourth 
portfolio formation strategy is based on Capital Asset Pricing Model (CAPM).  The fifth strategy is 
traditional Single Index Model (SIM) allowing for asset mispricing.  The sixth alternative is an 
empirical Bayesian approach with an informative prior incorporating a factor model namely Bayesian 
Single Index Model (BSIM).  
 Given that an investor has T observations for each individual N traded assets.  Let   R be asset 
return matrix5 with dimension NT × , im  is a vector of expected returns of securities, and ∑  is a 

population variance-covariance matrix of security returns.  Alternative models discussed below 
suggest that, by specifying different beliefs in prior distribution, portfolio selection yields different 
results. 
 
Traditional Mean-Variance Approach, Resampled Efficiency Frontier (REF), Capital Asset Pricing 
Model (CAPM), and Traditional Single Index Model (SIM) Approach 
 
 Within a traditional mean-variance portfolio selection framework, sample estimates are 
treated as true parameters.   This approach can be called the certainty equivalence method, and 
estimation risk is not taken into account.  Hence, the sample mean vector and sample covariance 
matrix are major inputs in the portfolio optimization process as shown in Equations (1) and (2).   

 

im  =
T

Ri

~ι′
, ni ,...,2,1=        (1) 

 S =
1

)
~

()
~

(

−

−′′−′

T

mRmR jjii
, nji ,...,2,1, =     (2) 

where:  im  = sample mean vector 

   S   = sample variance-covariance matrix 

)~,...,~,~(
~

21 iTiii rrrR =′ = excess return of each individual asset 

   T  = number of observations 
   n  = number of assets 
   ι′  = (1, 1, …, 1) 

 
Resampled Efficiency Frontier (REF) generates observed asset returns by Monte Carlo approach 

from two major parameters given that asset returns follow multivariate normal distribution.  After 
each set of observed returns are generated, efficient frontier spanning from minimum variance 
portfolio to maximum return portfolio is constructed using traditional mean variance optimization 
approach.  One hundred and one portfolios are determined on each efficient frontier and 
corresponding allocated weights are recorded.  The distance between minimum and maximum returns 

                                                 
4 The common adjusted beta, as suggested by Merrill Lynch, is the weighted average between sample beta 
estimate and the market beta.  Adjusted beta = )(

3

1
)(

3

2
mi betabeta +  . 

5 Returns are calculated with both continuous (difference of log price) and discrete returns (ratio of adjusted 
price difference).  Results based on continuous and discrete return calculations are not different. 
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is equally split.  Repeating the same processes for 500 times6, we have 500 different sets of parameter 
inputs and 500 efficient frontiers.  The original set of inputs is denoted as and obtained 

input sets are denoted as , , . . ., .  Portfolios Ranked 1 are the 
minimum variance portfolio and portfolios ranked 101 are maximum return portfolios.  Averaging 
optimal weights of each ranked portfolio from 500 efficient frontiers, we obtain average resample 
weights.  Portfolio risk and return are calculated in the last step.        
 

Within the Capital Asset Pricing Model (CAPM) and a single index model approach, asset 
return generating process is stated as shown in equation (3) and (4), respectively. 
  

βmRR=         (3) 

UCRR m +=         (4) 

  
Where: R    = vector of expected excess return on each individual asset  

mtR  = vector of expected excess market index return  

β    = vector of beta coefficient  









′

′
≡

β
α

C  = coefficient vector 

),0(~ TINU ⊗Σ  = residual matrix containing residual term of each asset, iε  

TI    =  identity matrix with rank T 
 
Residual terms in matrix U are assumed to be independent, serially uncorrelated, and 

homoskedastic.  Two crucial parameters, expected return and variance-covariance matrix for an 
individual asset, in efficient portfolio formation are shown below:  
   

CRRE mi =)(         (5) 

  222

iimii εσβσβσ +′=       (6) 

  22

ijmiij εσβσβσ +′′=       (7) 

 Where: 2
iσ  = variance of an individual asset 

  2
mσ  = variance of market index portfolio 

  2

iε
σ  = variance of residual terms 

  ijσ  = covariance of two individual assets 

 
If market efficient hypothesis holds, alpha or the intercept term in the single index model will 

be zero.  When alpha has a non-zero value, it indicates mispricing for the set of traded assets.  
Portfolio managers can outperform the market by determining and investing in non-zero alpha assets.   
 
Bayesian Single Index Model (BSIM)   
 
 Within this framework, the objective is to determine posterior distribution7 of parameter 
estimates, likelihood function and prior distribution must be determined via the conjugate function.  
He (2007) suggests the selected conjugate function with return generating process is given by 
equation (8) and prior distribution of the coefficient vector, C, and the variance-covariance matrix, 
Σ , is given in equation (9) 

                                                 
6 Number of observed returns is 500 sets as suggested in Markowitz and Usmen (2003). 
7 Posterior ∝ Likelihood ×  Prior. 
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   IW = Inverted-Wishart Distribution 

   NISH 2
0 =  

   =2S  Average of diagonal elements of the sample residual error matrix 
 Posterior distribution can be determined by collecting terms from the product of likelihood 
function and prior distribution as shown in equation (10) below: 
 

)()|(),|()|,( ΣΣΣ∝Σ pCpCRpRCp    (10) 
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 From the posterior distribution above, two indications can be made.  Given historical series of 
asset returns, firstly, joint distribution of two major parameters, )|,( RCp Σ , follows multi-variate 

normal distribution with posterior mean C
~

 and posterior variance V
~

⊗Σ .  Secondly, distribution of 
variance-covariance matrix, )|( Rp Σ , has an inverted-Wishart distribution with degree of freedom 

0
~ νν +=T  and a scale matrix H

~
. 

 Construct an optimal portfolio based on the single index model, if an investor has a strong 
belief that market is efficient and there is no mispricing, alpha will be zero and the model converges 
to the equilibrium model CAPM.  In real world, there are some rooms to make abnormal return by 
searching assets with nonzero alpha to capitalize on mispricing phenomenon.  Shrinkage Bayesian 
model presented in this paper suggests that if mispricing exists, estimation risk in parameter 
estimates, α  and β , should be taken into account by shrinking the two estimates to its equilibrium 
value with the Bayesian adjustment factor shown below: 
 



 

6 

   RXXXVC ′′+=







′

′
≡ −− 11

0 )(
~

β
α

    (11) 

    
To form a portfolio that incorporates estimation risk, we apply Bayesian concepts to alleviate 

the effect of estimation risk.  As discussed in Section 1, both informative and non-informative prior 
distributions are applied in constructing the optimal portfolio.  Incorporating estimation risk in a 
portfolio formation strategy would improve portfolio performance.  To validate this claim, an 
empirical test was performed.   
 
Portfolio Performance 

 
Two portfolio performance measurements are used in this study, namely expected utility and 

Sharpe’s Ratio.  The ultimate goal of an investor is maximizing one’s terminal wealth leading to 
maximize one’s expected utility.  The first portfolio performance measurement is stated below: 

 
Max. EU = E – λ(V)        (12) 

 
Where: EU = expected utility of each portfolio 
 E   = portfolio return 
            λ   = coefficient of degree of risk aversion; 0.5, 1, 2 
            V  = portfolio variance 

 
Given different level of degree of risk aversion, expected utility of each portfolio from each 

strategy will be assessed.  Among all portfolio formation strategies, portfolio possesses the highest 
expected utility is considered as the best performance portfolio. 

Since only two moments are used in constructing an optimal portfolio, the second portfolio 
performance measurement is Sharpe’s ratio.  The best strategy among six strategies will yield highest 
Sharpe’s ratio.  Ex ante portfolio performance measurements are compared to out-of-sample ex post 
portfolio performance measurements.  The better portfolio formation strategy leads to a higher 
expected utility and Sharpe’s ratio for both in- and out-of-sample data.   
 
3. Data and Descriptive Statistics 
 

Data used in this study are monthly index returns of 19 emerging markets8 adjusted for 
dividend and emerging market price index9.  Data are obtained from Data Stream.  Nineteen emerging 
countries with complete data are Argentina, Brazil, Chile, China, Columbia, Hungary, India, 
Indonesia, Malaysia, Mexico, Pakistan, Peru, the Philippines, Poland, Russian Federation, South 
Africa, Taiwan, Thailand, and Turkey.  Quotations of each market index are based on the same 
currency, U.S. dollar.  Periods covered in this study incorporate long range of time from 1995 to 2008 
which incorporates global crises.  Divided into two sub-periods, 1995-2001 and 2002-2008, had 
covered global financial crises10.  Sample period are total sample period, and two sub-periods.  Total 
sample period ranges from January 1995 to December 2008.  The first sub-period ranges from 
January 1995 to December 2001 and the second sub-period ranges from January 2002 to December 
200811.   

                                                 
8 List of countries in emerging markets bases on FTSE emerging market list. 
9 Emerging market price index is obtained from Data Stream under DS Mnemonic TOTMKEK in U.S. dollar 
unit. 
10 Global financial crises covered the followings events, Asian financial crisis in 1997, Long Term Capital 
Management (LTCM) crisis in Japan and Russia in 1998, IT bubble burst and dot com crisis in 2000, 
bankruptcy scandal of ENRON in late 2001, bond market crisis in 2003, and US subprime crisis in 2008, etc. 
11 Thank you for comments from reviewers regarding hyperinflation in some emerging markets during periods 
1990s and price jumps during crisis period.  Since samples in this study are total market adjusted price indexes, 
considered as big portfolios containing large amount of assets, and index returns are calculated in percentage 
during long range of time.  Therefore, hyperinflation in some emerging markets has insignificant effect on 
market return indexes.  Moreover, objective of this study is to point out that by incorporating new information, 
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Descriptive statistics are in Panel A and B of TABLE 112.  Panel B reports information 

ratio,
2

i

i

ασ
α

, of each country for all periods studied.  Descriptive results from Panel A indicate that all 

emerging markets exhibit non-zero alpha with positive beta coefficient.  Only a few countries with 
non-zero alpha are statistically significantly different from zero while all beta coefficients are 
statistically significantly different from zero.  This could be interpreted that emerging markets risk 
and expected return relationship conforms to modern portfolio theory and there is mispricing in some 
emerging countries.  Fund managers can insert their own belief in determining mispricing countries 
and recognize the abnormal return from such portfolio formation strategy.  Moreover, the average 
returns in each sub-period are not significantly different.  Based on total sample period, average 
monthly index returns range from -0.44 percent to 3.35 percent, from -1.15 percent to 5.79 percent for 
the first sub-period, and from -0.72 percent to 1.95 percent for the second sub-periods.  Unlike 
average index return, standard deviations or risk levels for each country are significantly different and 
larger than average return.  Based on total sample index return, standard deviations range from 4.79 
percent to 15.59 percent, from 5.67 percent to 19.33 percent in the first sub-period, and from 3.72 
percent to 10.37 percent in the second sub-period.  

The information ratio, as shown in Panel B, indicates that the mispricing of each country is 
large as each value differs from zero considerably.  For the total sample period, information ratio 
ranges from -136.796 (Taiwan) to 703.11 (Mexico), from -133.575 (Colombia) to 467.17 (South 
Africa) for the first sub-period, and from -602.626 (Taiwan) to 462.27 (Colombia).  It can be 
observed that the spread of variation of information ratio was wider in the second sub-period 
reflecting the recent subprime financial crisis.  The high value of the information ratio is the 
characteristic which indicates that the shrinkage Bayesian would apply. 

     
4. Empirical Evidence 
 

Theoretically, an ideal estimator would yield the same result as the true or future observed 
value.  The only situation in which an ideal estimator would exist is when there is perfect information 
for an estimated parameter.  Practically, an ideal estimator is impossible due to lack of perfect 
information.  Thus, a good estimator is the best that can be expected.  The six different estimating 
strategies are: traditional mean-variance (EV), Adjusted Beta (AB), Resampled Efficient Frontier 
(REF), Capital Asset Pricing Model (CAPM), Single Index Model (SIM), and Single Index Model 
incorporating shrinkage Bayesian factor namely Bayesian Single Index Model (BSIM).   

In this study, the realized or observed industrial index return is treated as the true average 
return.  Estimation error or mean squares forecast error is defined as the difference between true 
average return and estimated mean return for each sector.  Estimated values from each strategy are 
defined as ex ante estimates and observed or realized returns are defined as ex post values. 

 For each period, optimal weights are computed for each strategy.  Ex ante portfolio return is 
computed for the following out of sample month.  The first sub-period, ranging from January 1995 to 
December 2001, is the base window for the optimal weights of the first period.  Ex ante portfolio 
returns are computed and recorded for the next period, which is January 2002.  Observed out of 
sample or ex post return in January 2002 for each country is recorded based on the optimal weights 
from the ex ante portfolio.  The same process is repeated for the second sub-period ranges from 
January 2002 to December 2008.  The ex post return is out of the sample observed in January 2009.  
From these ex ante and realized monthly returns and average portfolio risk, the expected utility and 
Sharpe’s ratios of those portfolios are compared.  A better portfolio strategy would yield a higher 
expected utility and Sharpe’s ratio and lower differences between ex ante and ex post average values.   

                                                                                                                                                       
price jumps during financial market crises, in asset pricing via Bayesian adjusted factor could improve portfolio 
performance.  
12 Emerging market indexes are drawn from Data Stream, DS-TOTMK, which are available during 1990s with 
the same base of 100. 
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TABLE 1: Descriptive Statistics of index returns.  Three periods are explored, total period ranges from January 1995 to December 2008, the first sub-period ranges from 
January 1995 to December 2001, and the second sub-period ranges from January 2002 to December 2008.  Numbers in parentheses are t-statistics. 

Panel A 
  

Alpha 
  

  
Beta 

  

  
F-Stat 

  

  
Average Return 

  

  
Standard Deviation 

  
Country 

Total 
Period 

First Sub-
period 

Second Sub-
period 

Total 
Period 

First Sub-
period 

Second Sub-
period 

Total 
Period 

First Sub-
period 

Second 
Sub-
period 

Total 
Period 

First Sub-
period 

Second 
Sub-
period 

Total 
Period 

First 
Sub-
period 

Second 
Sub-
period 

0.03344***  0.06640***  0.00389 1.04746***  1.24056***  0.95713***  
Turkey  (-3.15) (-3.47) (-0.43) (-6.75) (-4.48) (-7.16) 

45.00*** 20.07*** 51.29*** 3.35% 5.79% 0.98% 15.59% 19.34% 10.37% 

0.01905***  0.03654***  0.00372 1.37491***  1.64265***  1.14265***  Russian 
Federation  (-2.39) (-2.56) (-0.54) (-11.83) (-7.95) (-11.12) 

135.70*** 63.23*** 123.66*** 1.92% 2.53% 1.08% 14.01% 17.20% 9.91% 

0.00953* 0.02532* -0.00442 0.79591***  0.86536***  0.76185***  
Hungary  (-1.71) (-1.71) (-0.91) (-9.82) (-5.99) (-10.56) 

93.12*** 35.99*** 111.49*** 0.96% 1.94% 0.03% 9.06% 10.83% 6.75% 

0.00894***  0.01418***  0.00593* 0.69188***  0.80156***  0.58642***  
Mexico  (-2.51) (-2.23) (-1.82) (-13.30) (-8.70) (-12.07) 

171.37*** 75.67*** 145.71*** 0.90% 0.87% 0.96% 6.64% 8.00% 4.93% 

0.00892***  0.01287**  0.00643 0.88102***  0.98651***  0.80493***  
Brazil  (-2.29) (-1.95) (-1.52) (-15.49) (-10.31) (-12.76) 

241.00*** 106.19*** 162.82*** 0.90% 0.61% 1.14% 7.89% 9.08% 6.64% 

0.00781 0.00479 0.00869 0.90282***  0.79943***  0.99837***  
China  (-1.08) (-0.37) (-1.20) (-8.52) (-4.30) (-9.22) 

69.44*** 18.30*** 85.04*** 0.79% -0.07% 1.49% 11.30% 12.93% 9.41% 

0.00648***  0.01084***  0.00366 0.67337***  0.74886***  0.59815***  
South Africa  (-2.09) (-2.25) (-0.92) (-14.88) (-10.73) (-10.10) 

213.13*** 115.15*** 102.03*** 0.65% 0.57% 0.74% 6.14% 6.77% 5.40% 

0.00564 0.00055 0.00849 0.78962***  0.59681***  0.98873***  
India  (-1.13) (-0.07) (-1.43) (-10.80) (-5.12) (-11.13) 

113.41*** 26.21*** 123.91*** 0.57% -0.35% 1.46% 8.48% 8.38% 8.57% 

0.00526 0.01573 -0.00379 0.71096***  0.72058***  0.71894***  
Poland  (-0.91) (-1.50) (-0.76) (-8.45) (-4.73) (-9.67) 

68.66*** 22.42*** 93.56*** 0.53% 1.08% 0.07% 8.95% 10.75% 6.62% 

0.00494 0.00347 0.00586 0.78745***  0.75247***  0.81547***  
Indonesia  (-0.82) (-0.32) (-1.01) (-8.91) (-4.74) (-9.46) 

75.96*** 22.49*** 89.44*** 0.50% -0.17% 1.09% 9.56% 11.21% 7.59% 

0.00493 -0.00724 0.01628***  0.43162***  0.33934***  0.51276***  
Columbia  (-1.04) (-0.98) (-2.74) (-6.24) (-3.18) (-5.80) 

39.20*** 10.12*** 33.63*** 0.50% -0.96% 1.95% 6.84% 7.07% 6.39% 

0.00434 0.00131 0.0058 0.51444***  0.44296***  0.56970***  
Peru  (-1.08) (-0.21) (-1.13) (-8.76) (-4.80) (-7.47) 

72.47*** 23.05*** 55.73*** 0.44% -0.17% 0.93% 6.31% 6.54% 6.02% 

0.00359 -0.00085 0.00701 0.46288***  0.53493***  0.34748***  
Pakistan  (-0.46) (-0.07) (-0.73) (-4.06) (-2.93) (-2.43) 

15.16*** 8.59*** 5.91*** 0.36% -0.45% 0.92% 10.63% 12.01% 9.01% 

0.0033 0.00885 0.00422 0.78993***  1.01402***  0.59031***  
Argentina  (-0.54) (-0.85) (-0.70) (-8.82) (-6.70) (-6.58) 

81.50*** 44.89 43.36 0.34% 0.19% 0.79% 9.65% 11.78% 6.75% 

0.0001 -0.00123 0.00392 0.45985***  0.59743***  0.32677***  
Chile  (-0.04) (-0.29) (-1.19) (-11.38) (-9.62) (-6.63) 

132.26 92.45*** 43.97*** 0.01% -0.53% 0.60% 4.79% 5.67% 3.72% 

-0.00165 0.00279 -0.00245 0.66056***  0.90756***  0.44679***  
Malaysia  (-0.34) (-0.32) (-0.78) (-9.43) (-7.14) (-8.80) 

92.46*** 51.01*** 77.43*** -0.16% -0.34% 0.03% 7.72% 10.13% 4.31% 

-0.00254 0.00699 -0.01154***  0.83599***  1.00786***  0.69489***  
Taiwan  (-0.59) (-0.97) (-2.64) (-13.29) (-9.67) (-10.66) 

177.67*** 93.60*** 113.59*** -0.25% 0.01% -0.72% 8.02% 9.54% 6.13% 

-0.00256 -0.00183 -0.00085 0.63556***  0.85783***  0.41319***  
Philippines  (-0.55) (-0.24) (-0.16) (-9.41) (-7.87) (-5.33) 

87.64*** 62.00*** 28.44*** -0.25% -0.77% 0.17% 7.44% 9.03% 5.47% 

-0.00453 -0.00394 -0.00248 0.93898***  1.10057***  0.81091***  
Thailand  (-0.70) (-0.34) (-0.43) (-9.98) (-6.50) (-9.55) 

101.92*** 42.22*** 91.16*** -0.44% -1.15% 0.26% 10.57% 13.05% 7.51% 

*, **, and *** indicates significant at 10%, 5%, and 1%, respectively. 
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TABLE 1(continued): Descriptive Statistics of index returns.  Three periods are explored, 
total period ranges from January 1995 to December 2008, the first sub-period ranges from 
January 1995 to December 2001, and the second sub-period ranges from January 2002 to 
December 2008.  Numbers in parentheses are t-statistics. 

 
Panel B 

  
Information Ratio 

Country Total Period First Sub-period Second Sub-period 
Turkey  295.7651 181.6571 48.3165 
Russian Federation  300.5328 179.6849 78.2327 
Hungary  308.6629 255.3434 -188.4281 
Mexico  703.1102 350.4998 557.6252 
Brazil  587.5088 294.6973 358.7845 
China  148.1109 28.7707 164.5916 
South Africa  674.1654 467.1711 231.4469 
India  224.6173 8.5055 239.0569 
Poland  158.2308 142.5708 -152.1374 
Indonesia  134.6862 28.8828 174.9011 
Columbia  219.6666 -133.5755 462.2749 
Peru  268.1393 32.2578 221.1845 
Pakistan  58.9806 -5.3772 76.1875 
Argentina  87.5264 81.0338 116.5557 
Chile  13.5179 -66.9743 358.3304 
Malaysia  -71.5389 36.3157 -210.6151 
Taiwan  -136.7961 135.1681 -602.6266 
Philippines  -119.5397 -32.4259 -31.299 
Thailand  -109.0524 -28.7929 -76.1938 

 
TABLE 2 shows that every portfolio strategy always overestimates true parameter values.  Ex 

ante average excess portfolio returns are higher than those of ex post averages for all strategies.  
Except the first sub-period, portfolios formed by adjusted beta approach (AB), Resampled Efficiency 
Frontier (REF), market equilibrium hypothesis approach (CAPM) and Bayesian approach (BSIM) 
outperform the forecast.  Ex ante excess portfolio returns are expected to be -0.47 percent, 2.32 
percent, -0.36 percent, and 2.67 percent per month for portfolios formed by AB, REF, CAPM, and 
BSIM, respectively whereas the ex post excess portfolio returns are 1.50 percent, 3.01 percent, 1.50 
percent, and 3.08 percent per month.  The Bayesian Shrinkage Portfolio incorporating single index 
model strategy (BSIM) is expected to have the largest average excess portfolio return compared with 
other strategies.  Ex ante average excess portfolio returns for BSIM are 2.39 percent per month or 
28.68 percent per annum, 2.67percent per month or 32.04 percent per annum, and 2.70 percent per 
month or 32.40 percent per annum in total period, the first sub-period, and the second sub-period, 
respectively.  The lowest ex ante average excess portfolio returns are portfolio constructed based on 
CAPM in all studies periods.  Ex post average excess portfolio return for the BSIM portfolio 
outperforms those of other strategies in total sample period and the first sub-period.  For total sample 
period, BSIM yields minimum loss of 1.07 percent per month or loss of 12.84 percent per annum 
whereas ex post returns of other strategies yield larger loss ranges from 2.31 percent per month or 
27.72 percent per annum (CAPM strategy) to 5.43 percent per month or 65.16 percent per annum (EV 
strategy).   
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TABLE 2: Portfolio Performance of Alternative Estimation Methods: Sharpe’s Ratio 
 

Monthly Excess Portfolio Return  

Ex-ante Ex-post Strategy 

Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) 
Mean-Variance 1.84% 2.74% 1.26% -5.43% -6.38% -1.46% 

AB -0.02% -0.47% -0.44% -2.31% 1.50% -2.47% 
REF 2.04% 2.32% 1.21% -2.84% 3.01% -1.44% 

CAPM -0.02% -0.36% 0.54% -2.31% 1.50% -2.80% 
SIM 1.94% 2.42% 1.27% -3.44% -4.03% 1.65% 

BSIM 2.39% 2.67% 2.70% -1.07% 3.08% -3.21% 
Monthly Excess Portfolio Risk 

Ex-ante Ex-post Strategy 
Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) 

Mean-Variance 8.84% 10.56% 4.36% 0.93% 1.37% 0.20% 
AB 2.75% 3.39% 2.01% 2.75% 7.73% 3.37% 
REF 0.29% 0.25% 0.19% 1.05% 0.87% 1.38% 

CAPM 2.75% 3.39% 3.60% 2.75% 7.73% 3.37% 
SIM 9.22% 10.85% 5.96% 9.21% 10.77% 5.26% 

BSIM 7.59% 9.22% 5.27% 7.56% 9.18% 5.26% 
 Sharpe’s Ratio 
 Ex-ante  Ex-post  

Strategy Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) Total Period (TP) Sub-Period 1 (SP1) Sub-Period 2 (SP2) 
Mean-Variance 0.1949 0.2189 0.2824 -10.1536 -1.5029 -10.4492 

AB -0.0093 0.2410 0.2038 -1.1015 -1.6834 -0.3573 
REF 0. 2089 0.2622 0.3830 -0.3681 0.1648 -0.9629 

CAPM -0.0075 -0.1337 0.1974 -1.1015 0.3107 -1.2359 
SIM 0.2038 0.2067 0.2113 -0.3573 -0.3198 0.3127* 

BSIM 0.3147* 0.2900*  0.5111* -0.1409* 0.3357* -0.6091 
Note: Ex ante and ex post portfolio monthly return and risk are reported.  Total sample periods range from January 1995 to December 2008.  Two out-of-
sample periods are January 1996 and January 2009.   
* denotes the highest Sharpe’s Ratio compared among different portfolio strategies. 
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TABLE 3: Portfolio Performance of Alternative Estimation Methods: Expected Utility  
 
 

Expected Utility 

Total Period (TP) Sub-Period 1 (SP1) 

Strategy A = 0.5 A = 1 A = 2 A = 0.5 A = 1 A = 2 

Mean-Variance 0.00553 0.00196 -0.00265 0.00452 0.00021 -0.00641 
AB -0.00052 -0.00076 -0.00125 -0.00546 -0.00607 -0.00691 
REF 0.00445 0.00088 -0.00368 0.00239 -0.00206 -0.00820 

CAPM -0.00048 -0.00072 -0.00118 -0.00419 -0.00494 -0.00593 
SIM 0.00603 -0.00149 -0.01288 0.00721 -0.00157 -0.01845 

BSIM 0.06309* 0.05967* 0.05283* 0.06488* 0.06001* 0.05026* 

       

       

Expected Utility    

Sub-Period 2 (SP2)    

Strategy A = 0.5 A = 1 A = 2    

Mean-Variance 0.01683 0.01376 0.00865    

AB 0.00627 0.00577 0.00511    

REF 0.01317 0.01083 0.00669    

CAPM 0.00658 0.00594 0.00512    

SIM 0.01690 0.01350 0.00669    

BSIM 0.06736* 0.06547* 0.06170*    

* denotes the highest Expected Utility given three different risk aversion level (A), A = 0.5,1, and 2, compared among different portfolio strategies. 
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Among six portfolio formation strategies, traditional portfolio approach (EV) has the 
largest variation as its monthly excess portfolio risk fluctuates widely while other formation 
strategies have intact ex ante and ex post portfolio risk.  As documented, the ex ante monthly 
portfolio risk of EV portfolios are ranges from 8.84 percent, 10.56 percent, and 4.36 percent to 
0.93 percent, 1.37 percent, and 0.20 percent in total sample period, the first sub-period, and the 
second sub-period, respectively.  The lowest deviation between ex ante and ex post average 
excess portfolio risk is that of BSIM.   

The Bayesian Single Index Model (BSIM) or Bayesian Portfolio incorporating a factor 
model performs best on an ex ante and ex post basis.  From ex ante Sharpe’s Ratio, BSIM 
produces the largest Sharpe’s Ratio and the portfolio constructed based on CAPM approach has 
the lowest ratio.  BSIM’s ex ante Sharpe’s Ratios are the largest at 0.31, 0.29, and 0.511 in the 
total sample period, first sub-period, and second sub-period, respectively.  The traditional mean-
variance efficient portfolio approach (EV) yields the lowest Sharpe’s Ratio of -10.15, -1.50, and 
-10.45 based on ex post average in each of sample period.  Among optimized portfolio 
strategies, it can be concluded that the ex post performance of the Bayesian portfolio approach 
exceeded that of the traditional approach.   

An alternative measure of portfolio performance is the expected utility taking into 
account portfolio risk, return, and degree of risk aversion.  Three degrees of risk aversion are 
used to explore effect of investor’s risk preference on portfolio performance.  The higher the 
expected utility indicates the better performance of a portfolio.  Table 3 exhibits maximum 
expected utility from different portfolio formation strategy given different degree of risk 
aversion (A), A = 0.5, 1, and 2.  Portfolios constructed by BSIM approach yield the highest 
expected utility for all levels of risk aversion degrees.  Results from Table 3 reassure that 
allowing for mispricing in asset prices in Bayesian portfolio formation strategy; BSIM 
portfolios outperform those of traditional approach.   
 
5. Conclusion 
 

Empirical results indicate that when estimation uncertainty is taken into account, the 
shrinkage Bayesian strategy incorporating single index model (BSIM) outperforms the 
Traditional portfolio selection strategy such as mean-variance efficient, Adjusted Beta model, 
Resampled Efficient Frontier model, CAPM, and single index model based on both ex ante and 
ex post performance.  This study not only demonstrates the benefits from using shrinkage 
estimators to alleviate estimation uncertainty problem but also suggests an appropriate portfolio 
selection strategy, namely an optimized portfolio incorporating a single index model or BSIM.  
Shrinkage Bayesian model presented in this paper suggests that if mispricing exists, estimation 
risk in parameter estimates, α  and β , should be taken into account by shrinking the two 
estimates to its equilibrium value with the Bayesian adjustment factor.  The major contribution 
of this study is that allowing for asset mispricing and applying Bayesian shrinkage adjusted 
factor to each asset’s alpha given that alpha will be shrunk toward market equilibrium condition 
or at zero alpha value, a single factor namely excess market return is adequate in alleviating 
estimation uncertainty.   
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