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Abstract

Efficient portfolio is a portfolio that yields mamium expected return given a level of risk or
has minimum level of risk given a level of expeotddrn. However, the optimal portfolios seem not
being as efficient as intended. Especially dufimgncial crisis period optimal portfolio is not an
optimal investment as it does not yield maximumrnegiven a specific level of risk, vice and versa.
One possible explanation for an unimpressive perforce of the seemingly efficient portfolio is
incorrectness in parameter estimates called “estiomarisk in parameter estimates”. Six different
estimating strategies are employed to explore est portfolio performance when estimation risk is
incorporated. These strategies are traditional meariance (EV), Adjusted Beta (AB) approach,
Resampled Efficient Frontier (REF), Capital Asseicilg Model (CAPM), Single Index Model
(SIM), and Single Index Model incorporating shrigkaBayesian factor namely Bayesian Single
Index Model (BSIM). Among the six alternative t&igées, shrinkage estimators incorporating the
single index model outperforms other traditionaktfmio selection strategies.Allowing for asset
mispricing and applying Bayesian shrinkage adjudicior to each asset’s alpha, a single factor
namely excess market return is adequate in allegastimation uncertainty.

Keywords: estimation risk, parameter uncertainty, Bayesianf@m, efficient portfolio, Single
Index Model

1. Introduction

Efficient portfolio is a portfolio that yields marum expected return given a level of risk or
has minimum level of risk given a level of expecteturn. Traditional efficient portfolio and its
extension incorporating single factor model as sstgfd by Markowitz (1952), Sharpe (1963), and
Elton, Gruber, Padberg (1976), and Michaud (1998) been explored and implemented in active
portfolio management. Optimal portfolio or theieetportfolio is determined at the tangency of the
capital allocation line and the efficient frontiePortfolio or asset allocation came into play ding
individual wealth investing in three investment ides. The first choice of investment is an active
portfolio, the second is the market index portfaigpassive portfolio, and the third is risklessedaor
cash. However, performance of an investment giyatecommended by a fund manager, mostly, is
not impressive. Especially during financial crigeriod, optimal portfolio is not an optimal
investment as intended. One possible explanatioarf unimpressive performance of the seemingly
efficient portfolio is incorrectness in parametestimates called “estimation risk in parameter
estimates”. Two crucial parameters in an efficipattfolio construction are expected return and
variance-covariance matrix. Estimation risk in tfmio formation causes by treating sample
estimates as true parameters. This paper ainakiagtestimation risk in parameter estimates into
account when construct an efficient frontier usamgpirical Bayesian shrinkage incorporating single
factor (index) model and comparing Bayesian padfelperformance with other portfolio formation
strategies during two financial crisis periods.

Various studies in the past can be divided intedghgroups. The first group conducted their
studies based on historical data ignoring estimatisk. This group includes Markowitz (1952),
Sharpe (1964), Kraus and Litzenberger (1976), Krdlevy and Markowitz (1984), and
Chunhachinda et al. (1997a and 1997b). The segoowp of studies took estimation risk into
account by proposing a Bayesian or resample efiédientier approach using historical data together
with Monte Carlo estimation process; for exampl&eirs (1962), Kalymon (1971), Barry (1974),
Klein and Bawa (1976), Brown (1979), Chen and Brdd®83), Jorion (1986), Horst, et.al (2002),
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Markowtiz and Usmen (2003), and Michaud (2003).e Third group focused on the asset pricing
approach by incorporating a factor model such asGapital Asset Pricing Model (CAPM) and/or
Arbitrage Pricing Theory (APT) in the portfolio setion process, e.g., Polson and Tew (2000), and
Pastor (2000). The third group uses a factor mwdbenchmark the performance of a recommended
portfolio.  Portfolio optimization is performed &b on historical data to estimate two crucial
parameters of the model, namely expected returnvandnce-covariance matrix. Estimation risk
due to treating sample estimates as true parameerdeen taken into account in optimal portfolio
formation via Bayesian Portfolio Optimization prese

Studies regarding the effect of estimation riskaonoptimal portfolio have been conducted
by a lot of scholars. Barry (1974) stated thaiesion risk does not change the efficient setvaiit
affect the optimal portfolio. Bawa, Brown, and K¢1979) and Klein and Bawa (1977) stated that,
when estimation risk is taken into account, assgntimat security returns are generated by a
stationary multivariate normal distribution for whithe investor has a diffuse prior, the effects of
estimation risk on the selection of an optimal fmdid from a set of risky assets cause the location
but not the composition of the efficient frontier thange. Frost and Savarino (1986) suggested
portfolio selection within a Bayesian frameworkdeal with estimation risk and stated that using
classical mean to estimate expected return and atbenents of asset returns leads to suboptimal
portfolio choices resulting in a loss of investditity. Jorion (1986) indicated that uncertaintycat
parameter values leads to suboptimal portfolio @miresulting in a loss in utility if historical
average is used as a true parameter estimate oddsngnted in Jorion (1986, 1991), the James-Stein
estimator is derived from the summation of compdmena quadratic loss function using a shrinkage
function to estimate parameter values and is ueedalidate the claim that sample mean is an
inadmissible estimator. Effron and Morris (1973vé proven that the James-Stein estimator
dominates MLE with good rules of Bayesian propsrtidorion (1986, 1991) extended the work of
James-Stein to a Bayes-Stein shrinkage mean asgwamiiance parameters are known.

Britten-Jones (1999) used 20 years of data on Libtop stock indexes to test hypotheses
about the weights of mean-variance efficient péidfo The evidence documented that sampling
error in estimates of the weights of global effitiportfolios is as large as when the return veatat
variance-covariance matrix are estimated by a ticadil approach. This means that the portfolio
risks of the traditionally suggested efficient folibs will be underestimated compared with that of
optimal portfolio incorporating estimation risk. aKing estimation uncertainty in portfolio
construction process, Michaud (1998) proposed Relsafificieny™ technique introducing Monte
Carlo methods based on eight asset classe48 years historical data. Resampled Efficiency
approach solved two major drawbacks of traditigmaidtfolio namely concentrated and instability
portfoliog. Markowitz and Usmen (2003) performed experin@niportfolio performance between
resampled and diffuse Bayes portfolios and repattietl resampled efficient portfolios outperform
those of diffuse Bayégortfolios. He (2007) revised an information ugiaigg model of Treynor and
Black (1973) within a Bayesian framework accountfog alpha uncertainty. By varying level of
overall active risk budget and centering alphaterequilibrium level of zero, the result indicatbdt
pension fund managers can reflects the overallidente in the ability of active management.
However, no recommendation for a better portfatiofation strategy had been made.

This study emphasizes investigating and suggesiimgappropriate portfolio formation
strategy by applying Bayesian shrinkage estimatmmortfolio selection when uncertainty about
parameter values exists. Two major portfolio faipyastrategies are i) optimized portfolio within a
traditional mean-variance efficient and ii) optiedz portfolio applying shrinkage asset return
incorporating a factor model approach. Model ardhmdology are discussed in Section 2. The data
and descriptive statistics of sectorial returns discussed in Section 3. Section 4 elaborates
empirical evidences. The last section is the amioh.

! Eight asset classes are Canada, France, Gernagoay),JU.K., U.S. equities, and U.S. and Euros
government/corporate bonds.

? Traditional portfolio optimization yields the caentrated portfolio by which some assets never leeter the
solution and few assets are included in the optpoatfolio composition. Instability portfolio imjgs that for
any small change in input parameters cause widéugtion in results.

? Diffuse Bayesian approach and non-informative iiiglief Bayesian approach are terms used
interchangeably.



2. Model and M ethodol ogy

Estimation risk in parameters of asset return lmarireated appropriately under a Bayesian
framework with either non-informative or informadiyprior distribution to shrink value of parameter
estimate towards an equilibrium value, or grandmme&he informative prior in this study is that all
asset return characteristics comply with a factodeh such as the single index model. This means
that, if asset characteristics based on histoggatage differ from the single index model, expacte
predictive returns will be drawn toward the expdcteturn suggested by the factor model. Six
alternative approaches in constructing an optinmatfplio are explored. The first is traditional
portfolio selection treating historical estimates taue parameters. The second alternative is an
optimal portfolio based on Adjusted Beta as widesed in the industfy The third approach is
Resampled Efficiency approach averaging optimagtisi of the same ranked portfolio. The fourth
portfolio formation strategy is based on CapitakétsPricing Model (CAPM). The fifth strategy is
traditional Single Index Model (SIM) allowing forsset mispricing. The sixth alternative is an
empirical Bayesian approach with an informativepimncorporating a factor model namely Bayesian
Single Index Model (BSIM).

Given that an investor has T observations for éadividual N traded assets. Let R be asset

return matrix with dimensiom x N , m is a vector of expected returns of securities, 2ands a

population variance-covariance matrix of securiggurns. Alternative models discussed below
suggest that, by specifying different beliefs imopdistribution, portfolio selection yields diffent
results.

Traditional Mean-Variance Approach, Resampled ificy Frontier (REF), Capital Asset Pricing
Model (CAPM), and Traditional Single Index ModedIM$Approach

Within a traditional mean-variance portfolio seies framework, sample estimates are
treated as true parameters. This approach cacalked the certainty equivalence method, and
estimation risk is not taken into account. Hertbe, sample mean vector and sample covariance
matrix are major inputs in the portfolio optimizatiprocess as shown in Equations (1) and (2).

m =l:|_ﬁ, i=12...,n (1)
(R-m)(R-m)
S T_1 L, ]=12,...n (2)

where: m = sample mean vector
S = sample variance-covariance matrix

!

R =(r,,F,,....[; ) = excess return of each individual asset
=
n

number of observations
number of assets

/=11, ...,1)

Resampled Efficiency Frontier (REF) generates oleseasset returns by Monte Carlo approach
from two major parameters given that asset retéolhew multivariate normal distribution. After
each set of observed returns are generated, effitientier spanning from minimum variance
portfolio to maximum return portfolio is construdteising traditional mean variance optimization
approach. One hundred and one portfolios are mgted on each efficient frontier and
corresponding allocated weights are recorded. digtance between minimum and maximum returns

* The common adjusted beta, as suggested by Meyrith, is the weighted average between sample beta
estimate and the market beta. Adjusted be&(tr_eta) + }(betan) :
3 3

® Returns are calculated with both continuous (déffee of log price) and discrete returns (ratiadjfisted
price difference). Results based on continuousdisatete return calculations are not different.
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is equally split. Repeating the same processesd@rtime§ we have 500 different sets of parameter
inputs and 500 efficient frontiers. The originalt ®©f inputs is denoted (”0’ QO) and obtained

input sets are denoted &, ), (1>, 05), . . .,(fis0. (s00). Portfolios Ranked 1 are the

minimum variance portfolio and portfolios rankedll@re maximum return portfolios. Averaging
optimal weights of each ranked portfolio from 5(ficgent frontiers, we obtain average resample
weights. Portfolio risk and return are calculatethe last step.

Within the Capital Asset Pricing Model (CAPM) andsiagle index model approach, asset
return generating process is stated as shown itiequ3) and (4), respectively.

R=R, A 3
R=R,C+U 4)

Where: R = vector of expected excess return on eachiohai asset
R, = vector of expected excess market index return
L = vector of beta coefficient

!

a’
C= {ﬁ } = coefficient vector

U ~N(@OX®I1;) =residual matrix containing residual term of eashet.;
|; = identity matrix with rank T

Residual terms in matrix U are assumed to be inudga, serially uncorrelated, and
homoskedastic. Two crucial parameters, expectagrreand variance-covariance matrix for an
individual asset, in efficient portfolio formati@re shown below:

E(R)=R,C (5)
ol =plorf +o f, (6)
Ojj =18i'0r$1/8j’ +U§i (7)

Where: o7 = variance of an individual asset

o, = variance of market index portfolio

2
m
o’ = variance of residual terms

o;; = covariance of two individual assets

If market efficient hypothesis holds, alpha or iltercept term in the single index model will
be zero. When alpha has a non-zero value, it atelc mispricing for the set of traded assets.
Portfolio managers can outperform the market bgrdeining and investing in non-zero alpha assets.

Bayesian Single Index Model (BSIM)

Within this framework, the objective is to detenmiposterior distributionof parameter
estimates, likelihood function and prior distritmtimust be determined via the conjugate function.
He (2007) suggests the selected conjugate fundtiitim return generating process is given by
equation (8) and prior distribution of the coefict vector, C, and the variance-covariance matrix,
X, is given in equation (9)

® Number of observed returns is 500 sets as sughesidarkowitz and Usmen (2003).
" Posterioroc Likelihood X Prior.



p(RC,Z) |2 |‘% exp{—%tr(R— XC)'(R- XC)= % (8)

T

Ik exp{—%tr[SJr (C-CV,H(C-C)z Y
Where: S= (R- XC)'(R- XC)
C=(XX)'XR

p(C.Z) = p(CZ) p(Z) (9)

Where: p(C|Z) ~ N(C,,Z®V,) || 2. exp{—%tr (C—C,)V;{(C—-C)=

a!
C z[ } = coefficient vector

ﬂ'
s? 0
Voil = 05
0 0

(vo+N+1)

PE) - W(Houvg) 2] *  expl-tH,2 )

IW = Inverted-Wishart Distribution
2
H,=S"1,
S? = Average of diagonal elements of the sample resietuar matrix

Posterior distribution can be determined by cdihgcterms from the product of likelihood
function and prior distribution as shown in equat{@0) below:

p(C.Z|R) e« p(RIC,Z) p(C|Z) p(X) (10)
_T+K+4vp+N+1

o2 | 2 exp{—%tr[(C—é)V‘l(C—6)+H~}

Where:C = (V;* + XX) (V;'C, + XR)
V=Vl + XX)™
H=H,+S+C)V;'C,+CXXC-CVC

From the posterior distribution above, two indicas can be made. Given historical series of
asset returns, firstly, joint distribution of twoajor parametersp(C,X | R), follows multi-variate

normal distribution with posterior medd and posterior variancg ®V . Secondly, distribution of
variance-covariance matrip(X | R) , has an inverted-Wishart distribution with degofefreedom

v =T +v, and a scale matriki .

Construct an optimal portfolio based on the siriglex model, if an investor has a strong
belief that market is efficient and there is nopriging, alpha will be zero and the model converges
to the equilibrium model CAPM. In real world, tkeare some rooms to make abnormal return by
searching assets with nonzero alpha to capitalzenispricing phenomenon. Shrinkage Bayesian
model presented in this paper suggests that if noieg exists, estimation risk in parameter
estimates and £, should be taken into account by shrinking the éstimates to its equilibrium

value with the Bayesian adjustment factor showowel
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~ a'
C= =V, + XX)'XR 11
M ) o

To form a portfolio that incorporates estimatioskriwe apply Bayesian concepts to alleviate
the effect of estimation risk. As discussed int®ecl, both informative and non-informative prior
distributions are applied in constructing the ogtirportfolio. Incorporating estimation risk in a
portfolio formation strategy would improve portiliperformance. To validate this claim, an
empirical test was performed.

Portfolio Performance

Two portfolio performance measurements are usekisnstudy, namely expected utility and
Sharpe’s Ratio. The ultimate goal of an investomiaximizing one’s terminal wealth leading to
maximize one’s expected utility. The first portboperformance measurement is stated below:

Max. EU = E -\(V) (12)

Where: EU = expected utility of each portfolio
E = portfolio return
L, = coefficient of degree of risk aversion; 0.521
V = portfolio variance

Given different level of degree of risk aversiorpected utility of each portfolio from each
strategy will be assessed. Among all portfolioration strategies, portfolio possesses the highest
expected utility is considered as the best perfagagortfolio.

Since only two moments are used in constructing@imal portfolio, the second portfolio
performance measurement is Sharpe’s ratio. Thesh@segy among six strategies will yield highest
Sharpe’s ratio.Ex anteportfolio performance measurements are compareditof-sampleax post
portfolio performance measurements. The bettetfgir formation strategy leads to a higher
expected utility and Sharpe’s ratio for both indaut-of-sample data.

3. Data and Descriptive Statistics

Data used in this study are monthly index returhd® emerging marketsadjusted for
dividend and emerging market price indePata are obtained from Data Stream. Nineteegrgimgy
countries with complete data are Argentina, Bragihile, China, Columbia, Hungary, India,
Indonesia, Malaysia, Mexico, Pakistan, Peru, th@igpimes, Poland, Russian Federation, South
Africa, Taiwan, Thailand, and Turkey. Quotationfseach market index are based on the same
currency, U.S. dollar. Periods covered in thiglgtincorporate long range of time from 1995 to 2008
which incorporates global crises. Divided into twob-periods, 1995-2001 and 2002-2008, had
covered global financial cris€s Sample period are total sample period, and twopsulds. Total
sample period ranges from January 1995 to Decer@®@8. The first sub-period ranges from
Janléellry 1995 to December 2001 and the second sigatpanges from January 2002 to December
2008".

8 List of countries in emerging markets bases onEE&®erging market list.

°® Emerging market price index is obtained from D&tt@am under DS Mnemonic TOTMKEK in U.S. dollar
unit.

19 Global financial crises covered the followings mge Asian financial crisis in 1997, Long Term Gapi
Management (LTCM) crisis in Japan and Russia irB19R bubble burst and dot com crisis in 2000,
bankruptcy scandal of ENRON in late 2001, bond reickisis in 2003, and US subprime crisis in 2048,

" Thank you for comments from reviewers regardingdrinflation in some emerging markets during pesiod
1990s and price jumps during crisis period. Ssamples in this study are total market adjusteckdridexes,
considered as big portfolios containing large amatimssets, and index returns are calculatedricepéage
during long range of time. Therefore, hyperinfiatin some emerging markets has insignificant effec
market return indexes. Moreover, objective of #tigly is to point out that by incorporating nefoimation,
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Descriptive statistics are in Panel A and B of TABN'>. Panel B reports information

ratio,iiz, of each country for all periods studied. Dedorgresults from Panel A indicate that all
emerging markets exhibit non-zero alpha with pesitieta coefficient. Only a few countries with
non-zero alpha are statistically significantly difint from zero while all beta coefficients are
statistically significantly different from zero. his could be interpreted that emerging markets risk
and expected return relationship conforms to mogertfolio theory and there is mispricing in some
emerging countries. Fund managers can insert ¢hair belief in determining mispricing countries
and recognize the abnormal return from such pdotfldrmation strategy. Moreover, the average
returns in each sub-period are not significantlifedent. Based on total sample period, average
monthly index returns range from -0.44 percent.8bPercent, from -1.15 percent to 5.79 percent for
the first sub-period, and from -0.72 percent to51p@rcent for the second sub-periods. Unlike
average index return, standard deviations or gskls for each country are significantly differand
larger than average return. Based on total sampkx return, standard deviations range from 4.79
percent to 15.59 percent, from 5.67 percent to3®&rcent in the first sub-period, and from 3.72
percent to 10.37 percent in the second sub-period.

The information ratio, as shown in Panel B, indsathat the mispricing of each country is
large as each value differs from zero consideralifpr the total sample period, information ratio
ranges from -136.796 (Taiwan) to 703.11 (Mexicopnf -133.575 (Colombia) to 467.17 (South
Africa) for the first sub-period, and from -602.6ZBaiwan) to 462.27 (Colombia). It can be
observed that the spread of variation of infornmatratio was wider in the second sub-period
reflecting the recent subprime financial crisis.heThigh value of the information ratio is the
characteristic which indicates that the shrinkaggeBian would apply.

4. Empirical Evidence

Theoretically, an ideal estimator would yield tlean® result as the true or future observed
value. The only situation in which an ideal estionavould exist is when there is perfect informatio
for an estimated parameter. Practically, an ideimator is impossible due to lack of perfect
information. Thus, a good estimator is the beat tan be expected. The six different estimating
strategies are: traditional mean-variance (EV),uat§d Beta (AB), Resampled Efficient Frontier
(REF), Capital Asset Pricing Model (CAPM), Singledéx Model (SIM), and Single Index Model
incorporating shrinkage Bayesian factor namely BayeSingle Index Model (BSIM).

In this study, the realized or observed indusindex return is treated as the true average
return. Estimation error or mean squares foreeastr is defined as the difference between true
average return and estimated mean return for ezatrs Estimated values from each strategy are
defined aex anteestimates and observed or realized returns ameedefisex postvalues.

For each period, optimal weights are computedeéah strategyEx anteportfolio return is
computed for the following out of sample month. eThst sub-period, ranging from January 1995 to
December 2001, is the base window for the optimeigits of the first period.Ex anteportfolio
returns are computed and recorded for the nexbgyerihich is January 2002. Observed out of
sample orex postreturn in January 2002 for each country is readid@sed on the optimal weights
from the ex anteportfolio. The same process is repeated for dworsd sub-period ranges from
January 2002 to December 2008. HExepostreturn is out of the sample observed in Januafp20
From theseex anteand realized monthly returns and average portfiadik, the expected utility and
Sharpe’s ratios of those portfolios are comparédbetter portfolio strategy would yield a higher
expected utility and Sharpe’s ratio and lower défeces betweeex anteandex postaverage values.

price jumps during financial market crises, in agsieing via Bayesian adjusted factor could imggortfolio
performance.

2 Emerging market indexes are drawn from Data Str&®aTOTMK, which are available during 1990s with
the same base of 100.



TABLE 1: Descriptive Statistics of index returns. Threequs are explored, total period ranges from Jané®5 to December 2008, the first sub-period rarigem
January 1995 to December 2001, and the secondesiddpanges from January 2002 to December 20a8nk¥érs in parentheses are t-statistics.

Pand A
Alpha Beta F-Stat Average Return Standard Deviation
Country Second Second First Second
Total First Sub- Second Sub- Total First Sub- Second Sub- Total First Sub- Sub- Total First Sub-  Sub- Total Sub- Sub-
Period period period Period period period Period period period Period period period Period period period
0.03344" 0.06640" 0.00389 1.04748 1.24056" 0.95713" 45.00" 20.07" 51.29™ 3.35% 5.79% 0.98% 15.59% 19.34% 10.37
Turkey (-3.15) (-3.47) (-0.43) (-6.75) (-4.48) (-7.16)
Russian 0.01905" 0.03654" 0.00372 1.37491 1.64265" 1.14265" 135.70" 63.23" 123.66" 1.92% 2.53% 1.08% 14.01% 17.20% 9.914
Federation (-2.39) (-2.56) (-0.54) (-11.83) (-3.95 (-11.12)
0.00953 0.02532 -0.00442 0.79591  0.86536 0.76185" 93.13" 35.99° 11149 | 0.96% 1.94%  003%| 9.06%  10.83%  6.759
Hungary (-1.72) (-1.72) (-0.91) (-9.82) (-5.99) 10:56)
0.00894"  0.01418" 0.00593 0.69188"  0.80156" 0.58642" 171.37"  75.67°  145.71° | 0.90% 087%  0.96%|  6.64% 8.00% 4.939
Mexico (-2.51) (-2.23) (-1.82) (-13.30) (-8.70) (-12.07)
_ 0.00892°  0.01287 0.00643 088102  0.98651" 0.80493" 241.00°  106.19°  162.82° | 0.90% 0.61% 1.14%|  7.89% 9.08% 6.649
Brazil (-2.29) (-1.95) (-1.52) (-15.49) (-10.31) -12.76)
0.00781 0.00479 0.00869 0.90782  0.79943" 0.99837" - " .
China (-1.08) (:0.37) (1.20) (8.52) (-4.30) en) 69.44 18.30 85.04 0.79% -0.07% 1.49%| 11.30%  12.93% 9.419
. 0.00648"  0.01084" 0.00366 0.67337  0.74886" 059815" | 21313  11518"  102.03" | 0.65% 057%  0.74%| 6.14%  6.77%  5.409
South Africa (-2.09) (-2.25) (-0.92) (-14.88) (-18) (-10.10)
0.00564 0.00055 0.00849 0.78962  0.59681" 0.98873" 113.41% 2621 12391° | 057%  -0.35%  1.46%| 8.48% 8.38% 8.579
India (-1.13) (-0.07) (-1.43) (-10.80) (-5.12) (-11.13)
0.00526 0.01573 -0.00379 0.71096  0.72058" 0.71894" 68.66" 22.43" 93.56" 0.53% 1.08% 0.07% 8.95% 10.75% 6.629
Poland (-0.91) (-1.50) (-0.76) (-8.45) (-4.73) 69
0.00494 0.00347 0.00586 0.78745  0.75247" 0.81547" 75.96" 22.49" 89.44" | 050%  -017%  1.09%| 956% = 11.21%  7.599
Indonesia (-0.82) (-0.32) (-1.01) (-8.91) (-4.74) (-9.46)
0.00493 -0.00724 0.01628 0.43162" 0.33934" 0.51276" 39.20™ 10.13" 33.63" 0.50% -0.96% 1.95% 6.84% 7.07% 6.399
Columbia (-1.04) (-0.98) (-2.74) (-6.24) (-3.18) (-5.80)
0.00434 0.00131 0.0058 0.51424  0.44296" 0.56970" 72.47" 23.08" 5573" | 0.44%  -017%  0.93%| 6.31% 6.54% 6.029
Peru (-1.08) (-0.21) (-1.13) (-8.76) (-4.80) (M4
0.00359 -0.00085 0.00701 0.46288  0.53493" 0.34748" 15.16™ 8.59™ 5.91™ 0.36% -0.45% 0.92% 10.63% 12.01% 9.014
Pakistan (-0.46) (-0.07) (-0.73) (-4.06) (-2.93) -2.43)
0.0033 0.00885 0.00422 0.78893  1.01402" 0.59031" 81.50" 44.89 43.36 0.34% 0.19% 0.799 0.65%  11.78% 6.7
Argentina (-0.54) (-0.85) (-0.70) (-8.82) (-6.70) (-6.58)
0.0001 -0.00123 0.00392 045985 059743 0.32677" 132.26 9245  4397" | 001%  -053%  0.60%| 479% = 567%  3.729
Chile (-0.04) (-0.29) (-1.19) (-11.38) (-9.62) £8)
-0.00165 0.00279 -0.00245 0.66056  0.90756" 0.44679" 92.46" 51.01" 7743" | -0.16%  -0.34%  0.03%| 7.72% = 10.13%  4.319
Malaysia (-0.34) (-0.32) (-0.78) (-9.43) (-7.14) -8.80)
-0.00254 0.00699 -0.01154 0.83599" 1.00786" 0.69489" 177.67" 93.60" 113.59" -0.25% 0.01% -0.72% 8.02% 9.54% 6.139
Taiwan (-0.59) (-0.97) (-2.64) (-13.29) (-9.67) (-10.66)
-0.00256 -0.00183 -0.00085 0.63556  0.85783" 0.41319" 87.64" 62.00" 28.44" -0.25% L0.77% 0.17% 7.44% 9.03% 5.479
Philippines (-0.55) (-0.24) (-0.16) (-9.41) (-7.87) (-5.33)
-0.00453  -0.00394 -0.00248 0.93898  1.10057 081091 | 10199 422"  91.16" | -044%  -115%  0.26%| 1057%  13.05%  7.51
Thailand (-0.70) (-0.34) (-0.43) (-9.98) (-6.50) -9.65)

* ** and *** indicates significant at 10%, 5%, drl%, respectively.



TABLE 1(continued): Descriptive Statistics of index returns. Threaqus are explored,
total period ranges from January 1995 to Decemb@8 2the first sub-period ranges from
January 1995 to December 2001, and the secondesidzipanges from January 2002 to
December 2008. Numbers in parentheses are ttsisitis

Panel B

Information Ratio

Country Total Period  First Sub-period Second Sub-perigd
Turkey 295.7651 181.6571 48.3165
Russian Federation 300.5328 179.6849 78.2327
Hungary 308.6629 255.3434 -188.4281
Mexico 703.1102 350.4998 557.6252
Brazil 587.5088 294.6973 358.7845
China 148.1109 28.7707 164.5916
South Africa 674.1654 467.1711 231.4469
India 224.6173 8.5055 239.0569
Poland 158.2308 142.5708 -152.1374
Indonesia 134.6862 28.8828 174.9011
Columbia 219.6666 -133.5755 462.2749
Peru 268.1393 32.2578 221.1845
Pakistan 58.9806 -5.3772 76.1875
Argentina 87.5264 81.0338 116.5557
Chile 13.5179 -66.9743 358.3304
Malaysia -71.5389 36.3157 -210.6151
Taiwan -136.7961 135.1681 -602.6266
Philippines -119.5397 -32.4259 -31.299
Thailand -109.0524 -28.7929 -76.1938

TABLE 2 shows that every portfolio strategy alway&restimates true parameter valuges.
ante average excess portfolio returns are higher thaset ofex postaverages for all strategies.
Except the first sub-period, portfolios formed lajusted beta approach (AB), Resampled Efficiency
Frontier (REF), market equilibrium hypothesis agmo (CAPM) and Bayesian approach (BSIM)
outperform the forecastEx anteexcess portfolio returns are expected to be -Ogitemt, 2.32
percent, -0.36 percent, and 2.67 percent per mimnthortfolios formed by AB, REF, CAPM, and
BSIM, respectively whereas tlex postexcess portfolio returns are 1.50 percent, 3.0tgm, 1.50
percent, and 3.08 percent per month. The Baye3mimkage Portfolio incorporating single index
model strategy (BSIM) is expected to have the lsirggerage excess portfolio return compared with
other strategies.Ex anteaverage excess portfolio returns for BSIM are 288cent per month or
28.68 percent per annum, 2.67percent per montt2 @3percent per annum, and 2.70 percent per
month or 32.40 percent per annum in total peribd, first sub-period, and the second sub-period,
respectively. The lowesx anteaverage excess portfolio returns are portfoliostarcted based on
CAPM in all studies periods.Ex postaverage excess portfolio return for the BSIM pmictf
outperforms those of other strategies in total dampriod and the first sub-period. For total seemp
period, BSIM yields minimum loss of 1.07 percent pgnth or loss of 12.84 percent per annum
whereasex postreturns of other strategies yield larger loss eanfjom 2.31 percent per month or
27.72 percent per annum (CAPM strategy) to 5.48querper month or 65.16 percent per annum (EV
strategy).



TABLE 2: Portfolio Performance of Alternative Estation Methods: Sharpe’s Ratio

Monthly Excess Portfolio Return

Strategy Ex-ante Ex-post
Total Period (TP) Sub-Period 1 (SP1) Sub-Perio8R2| Total Period (TP) Sub-Period 1 (SP1) Sub-Be&2i(SP2)
Mean-Variance 1.84% 2.74% 1.26% -5.43% -6.38% -1.46%
AB -0.02% -0.47% -0.44% -2.31% 1.50% -2.47%
REF 2.04% 2.32% 1.21% -2.84% 3.01% -1.44%
CAPM -0.02% -0.36% 0.54% -2.31% 1.50% -2.80%
SIM 1.94% 2.42% 1.27% -3.44% -4.03% 1.65%
BSIM 2.39% 2.67% 2.70% -1.07% 3.08% -3.21%
Monthly Excess Portfolio Risk
Strategy Ex-ante Ex-post
Total Period (TP) Sub-Period 1 (SP1) Sub-Periof22) Total Period (TP) Sub-Period 1 (SP1) Sub-B&i(5P2)
Mean-Variance 8.84% 10.56% 4.36% 0.93% 1.37% 0.20%
AB 2.75% 3.39% 2.01% 2.75% 7.73% 3.37%
REF 0.29% 0.25% 0.19% 1.05% 0.87% 1.38%
CAPM 2.75% 3.39% 3.60% 2.75% 7.73% 3.37%
SIM 9.22% 10.85% 5.96% 9.21% 10.77% 5.26%
BSIM 7.59% 9.22% 5.27% 7.56% 9.18% 5.26%
Sharpe’s Ratio
Ex-ante Ex-post
Strategy Total Period (TP) Sub-Period 1 (SP1) SettieB 2 (SP2) Total Period (TP) Sub-Period 1 (SP1)Sub-Period 2 (SP2)
Mean-Variance 0.1949 0.2189 0.2824 -10.1536 -1.5029 -10.4492
AB -0.0093 0.2410 0.2038 -1.1015 -1.6834 -0.3573
REF 0. 2089 0.2622 0.3830 -0.3681 0.1648 -0.9629
CAPM -0.0075 -0.1337 0.1974 -1.1015 0.3107 -1.2359
SIM 0.2038 0.2067 0.2113 -0.3573 -0.3198 0.3127
BSIM 0.3147 0.2900 0.5111 -0.1409 0.3357 -0.6091

Note: Ex anteandex postportfolio monthly return and risk are reportedotdl sample periods range from January 1995 to idbee 2008. Two out-of-
sample periods are January 1996 and January 2009.
* denotes the highest Sharpe’s Ratio compared adiffegent portfolio strategies.
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TABLE 3: Portfolio Performance of Alternative Esation Methods: Expected Utility

Total Period (TP)

Expected Utility

Sub-Period 1 (SP1)

* denotes the highest Expected Utility given thriéieient risk aversion level (A), A = 0.5,1, andé@dmpared among different portfolio strategies.

11

Strategy A=05 A=1 A=2 A=0.5 A=1 A=2
Mean-Variance 0.00553 0.00196 -0.00265 0.00452 0200 -0.00641
AB -0.00052 -0.00076 -0.00125 -0.00546 -0.00607 00691
REF 0.00445 0.00088 -0.00368 0.00239 -0.00206 8200
CAPM -0.00048 -0.00072 -0.00118 -0.00419 -0.00494 0.00593
SIM 0.00603 -0.00149 -0.01288 0.00721 -0.00157 1846
BSIM 0.06309 0.05967 0.05283 0.06488 0.06001 0.05026
Expected Utility
Sub-Period 2 (SP2)
Strategy A=0.5 A=1 A=2
Mean-Variance 0.01683 0.01376 0.00865
AB 0.00627 0.00577 0.00511
REF 0.01317 0.01083 0.00669
CAPM 0.00658 0.00594 0.00512
SIM 0.01690 0.01350 0.00669
BSIM 0.06736 0.06547 0.06170




Among six portfolio formation strategies, traditarportfolio approach (EV) has the
largest variation as its monthly excess portfolgk rfluctuates widely while other formation
strategies have intaeix anteandex postportfolio risk. As documented, thex antemonthly
portfolio risk of EV portfolios are ranges from 8.8ercent, 10.56 percent, and 4.36 percent to
0.93 percent, 1.37 percent, and 0.20 percent &h $saimple period, the first sub-period, and the
second sub-period, respectively. The lowest deviabetweenex anteand ex postaverage
excess portfolio risk is that of BSIM.

The Bayesian Single Index Model (BSIM) or Bayedrantfolio incorporating a factor
model performs best oan ex anteand ex postbasis. Fromex anteSharpe’s Ratio, BSIM
produces the largest Sharpe’s Ratio and the piortfoihstructed based on CAPM approach has
the lowest ratio. BSIM'&x anteSharpe’s Ratios are the largest at 0.31, 0.290&1L in the
total sample period, first sub-period, and secarderiod, respectively. The traditional mean-
variance efficient portfolio approach (EV) yieldetlowest Sharpe’s Ratio of -10.15, -1.50, and
-10.45 based orex postaverage in each of sample period. Among optimipedfolio
strategies, it can be concluded that étiepostperformance of the Bayesian portfolio approach
exceeded that of the traditional approach.

An alternative measure of portfolio performancettie expected utility taking into
account portfolio risk, return, and degree of rslersion. Three degrees of risk aversion are
used to explore effect of investor’s risk prefeemn portfolio performance. The higher the
expected utility indicates the better performan€e gortfolio. Table 3 exhibits maximum
expected utility from different portfolio formatiostrategy given different degree of risk
aversion (A), A = 0.5, 1, and 2. Portfolios consted by BSIM approach yield the highest
expected utility for all levels of risk aversiongiees. Results from Table 3 reassure that
allowing for mispricing in asset prices in Bayesiportfolio formation strategy; BSIM
portfolios outperform those of traditional approach

5. Conclusion

Empirical results indicate that when estimation artainty is taken into account, the
shrinkage Bayesian strategy incorporating singldexn model (BSIM) outperforms the
Traditional portfolio selection strategy such asamgariance efficient, Adjusted Beta model,
Resampled Efficient Frontier model, CAPM, and sinigidex model based on batk anteand
ex postperformance. This study not only demonstratesbi@eefits from using shrinkage
estimators to alleviate estimation uncertainty pEobbut also suggests an appropriate portfolio
selection strategy, namely an optimized portfatioorporating a single index model or BSIM.
Shrinkage Bayesian model presented in this papgyests that if mispricing exists, estimation
risk in parameter estimates; and £, should be taken into account by shrinking the two

estimates to its equilibrium value with the Bayasdjustment factor. The major contribution
of this study is that allowing for asset mispriciagd applying Bayesian shrinkage adjusted
factor to each asset’s alpha given that alphabeilshrunk toward market equilibrium condition
or at zero alpha value, a single factor namely exawarket return is adequate in alleviating
estimation uncertainty.

12



References

Barry, C. (1974) Portfolio analysis under uncertaeans, variances, and covariandesirnal
of Finance 29, 515 - 522.

Barry, C. & Robert, L. (1976) Nonstationarity andrifolio choice.Journal of Financial and
Quantitative Analysisll, 217-235.

Bawa, V. (1976) Admissible portfolios for all indilwals.Journal of Finance31, 1169 — 1183.
Beasel, J. (1974) On the assessment of risk: Sontleef considerationslournal of Finance
29, 1491-1494.

Berger, J. (1985)Statistical Decision Theory and Bayesian Analydlew York: Springer-
Verlag.

Bernstein, P. (2004) The Great Alpha Trasurnal of Portfolio Managemens0, 315-342.
Black, F. & Litterman, R.B. (1992) Global Portfoli@ptimization.Financial Analysts Journal,
48, 28-43.

Blume, M. (1971) On the assessment of rikdurnal of Finance26, 1-10.

Blume, M. (1973) A new look at the Capital Asseiciig Model.Journal of Finance28, 19-
33.

Britten-Jones, M. (1999) The sampling error inreates of mean-variance efficient portfolio.
Journal of Finance54, 655-671.

Brown, S. (1979) The effect of estimation risk oapital market equilibriumJournal of
Financial and Quantitative Analysi$4, 215-220.

Chen, S. & Brown, S. (1983) Estimation risk andgenrules for optimal portfolio selection.
Journal of Finance38, 1087-1093.

Clarence, C. & Kwan, Y. (1984) Portfolio analysgng single index, multi-index and constant
correlation models: A unified treatmedburnal of Finance39, 1469-1483

Chopra, C. & Ziemba, W. (1993) The effect of errmrsneans, variances, and covariances on
optimal portfolio choiceJournal of Portfolio Management9, 6-11.

Chuhachinda, P., Danpani, K., Hamid, S., & Prakash,(1997) Portfolio selection and
skewness: Evidence from international stock markietsrnal of Banking & Finange21, 143 —
167.

Chunhachinda, P. (1997) Performance measure ofablstock markets when return
distributions are asymmetrimternational Journal of Business Researth, 19 — 37.

Clarkson, P. & Thompson, R. (1990) Empirical estasaof beta when investors face estimation
risk. Journal of Finance45, 431-453.

Clarkson, P., Guedes, J., & Thompson, R. (1996)tl@@ndiversification, observability, and
measurement of estimation rislaurnal of Financial and Quantitative Analysgi,, 69-84.
Cohen, K. & Pogue, J. (1967) An empirical evaluatdd alternative portfolio-selection models.
Journal of Business$0, 166-193.

Farr, D. (2006) Exploring the Dimensions of ActiWanagement.Journal of Portfolio
Management33, 31-36.

Fernandes, J.L.B., and J.R.H. Ornelas (2009) Msgimgi Operational Risk in Portfolio
Allocation DecisionsJournal of Risk Management in Financial Instituti@ 438-450.

Frost, P. & Savarino, J. (1986) An empirical Baggproach to efficient portfolio selection.
Journal of Financial and Quantitative Analysisl, 293-305.

He, Z. (2007) Incorporating alpha uncertainty ipttfolio decisions: A Bayesian revisit of the
Treynor-Black modelJournal of Asset ManagemeBt,161-175.

Horst, J., Roon, F. and Werker, B. (2002) IncorporaEstimation Risk in Portfolio Choice.
Tilburg University, Center for Economic Research sddission Paper No. 65
http://papers.ssrn.com/sol3/paper.cfm?abstract 44625.

Jorion, P. (1986) Bayes-Stein estimation for pdidfanalysis.Journal of Financial and
Quantitative Analysi?1, 279 — 292.

Jorion, P. (1991) Bayesian and CAPM estimatorshef means: Implications for portfolio
selectionJournal of Banking and Financéb, 717-72.

Jobson, J.D., and B. Korkie (1980) Estimation orildavitz Efficient Portfolios.Journal of the
American Statistical Associationb, 544-554.

13



Kalymon, B. (1971) Estimation risk and portfoliolestion model.Journal of Financial and
Quantitative Analysish, 559-582.

Karolyi, A. (1993) A Bayesian approach to modelstgck return volatility for option valuation.
Journal of Financial and Quantitative Analysi8, 579 — 594.

Klein, R. & Bawa, V. (1976) The effect of estimatiask on optimal portfolio choicelournal
of Financial Economics3, 215 — 231.

Ledoit, O. & Wolf, M. (2003) Improved estimation tfie covariance matrix of stock returns
with an application to portfolio selectiodournal of Empirical Financel0, 603-621

Markowitz, H. (1952) Portfolio selectiodournal of Finance7, 77-91.

Markowitz, H. and N. Usmen (2003) Resampled Frosti®¥ersus Diffuse Bayes: An
ExperimentJournal of Investment Managemeht 9-25.

Michaud, R. and R. Michaud (2008) Estimation Erramnd Portfolio Optimization: A
Resampling Solutionlournal of Investment Managemg@i 8-28.

Michaud, R. (1998) Efficient Asset Management. Néavk: Harvard Business School Press.
Nathaphan, S. (2007) An empirical Study on EffédEstimation Risk on Portfolio Risk.
Journal of Business Administratiohy — 80.

Pastor, L. (2000) Portfolio selection and assetipgi models.Journal of Finance55, 179 —
223.

Polson, N. & Tew, B. (2000) Bayesian portfolio stlen: An empirical analysis of the S&P
500 index 1970 — 1996ournal of Business & Economic Statistit8, 164 — 173.

Scherer, B. (2002) Portfolio Resampling: Review @ridique. Financial Analysts Journdg,
98-109.

Sharpe, W. (1964) Capital asset prices: A theomnafket equilibrium under condition of risk.
Journal of Financel9, 425 -442.

Treynor, J. L. & Black, F. (1973) How to use setyudnalysis to improve portfolio selection.
Journal of Busines<l6, 66-88.

Vasicek, O. (1973) A note on using cross-sectianfdrmation in Bayesian estimation of
security betaJournal of Finance28, 1233-1239.

Winkler, R. (1973) Bayesian models for forecasfumyre security priceslournal of Financial
and Quantitative Analysig, 387-406.

Waring, B.M. & Siegel, L.B. (2003) The Dimension$ Active ManagementJournal of
Portfolio Managemen9, 35-51.

Winkler, R. & Barry, C. (1975) A Bayesian model foortfolio selection and revisiodournal
of Finance 30, 179-192.

Zellner, A. (1971).An Introduction to Bayesian Inference in EcononestrNew York: John
Wiley & Sons.

14



Estimation Risk Modeling in Optimal Portfolio Selection: An Empirical Study from
Emerging Markets'
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Abstract

Efficient portfolio is a portfolio that yields mamium expected return given a level of risk or
has minimum level of risk given a level of expeotddrn. However, the optimal portfolios seem not
being as efficient as intended. Especially dufimgncial crisis period optimal portfolio is not an
optimal investment as it does not yield maximumrnegiven a specific level of risk, vice and versa.
One possible explanation for an unimpressive perforce of the seemingly efficient portfolio is
incorrectness in parameter estimates called “estiomarisk in parameter estimates”. Six different
estimating strategies are employed to explore est portfolio performance when estimation risk is
incorporated. These strategies are traditional meariance (EV), Adjusted Beta (AB) approach,
Resampled Efficient Frontier (REF), Capital Asseicilg Model (CAPM), Single Index Model
(SIM), and Single Index Model incorporating shrigkaBayesian factor namely Bayesian Single
Index Model (BSIM). Among the six alternative t&igées, shrinkage estimators incorporating the
single index model outperforms other traditionaktfmio selection strategies.Allowing for asset
mispricing and applying Bayesian shrinkage adjudicior to each asset’s alpha, a single factor
namely excess market return is adequate in allegastimation uncertainty.

Keywords: estimation risk, parameter uncertainty, Bayesianf@m, efficient portfolio, Single
Index Model

1. Introduction

Efficient portfolio is a portfolio that yields marum expected return given a level of risk or
has minimum level of risk given a level of expecteturn. Traditional efficient portfolio and its
extension incorporating single factor model as sstgfd by Markowitz (1952), Sharpe (1963), and
Elton, Gruber, Padberg (1976), and Michaud (1998) been explored and implemented in active
portfolio management. Optimal portfolio or theieetportfolio is determined at the tangency of the
capital allocation line and the efficient frontiePortfolio or asset allocation came into play ding
individual wealth investing in three investment ides. The first choice of investment is an active
portfolio, the second is the market index portfaigpassive portfolio, and the third is risklessedaor
cash. However, performance of an investment giyatecommended by a fund manager, mostly, is
not impressive. Especially during financial crigeriod, optimal portfolio is not an optimal
investment as intended. One possible explanatioarf unimpressive performance of the seemingly
efficient portfolio is incorrectness in parametestimates called “estimation risk in parameter
estimates”. Two crucial parameters in an efficipattfolio construction are expected return and
variance-covariance matrix. Estimation risk in tfmio formation causes by treating sample
estimates as true parameters. This paper ainakiagtestimation risk in parameter estimates into
account when construct an efficient frontier usamgpirical Bayesian shrinkage incorporating single
factor (index) model and comparing Bayesian padfelperformance with other portfolio formation
strategies during two financial crisis periods.

Various studies in the past can be divided intedghgroups. The first group conducted their
studies based on historical data ignoring estimatisk. This group includes Markowitz (1952),
Sharpe (1964), Kraus and Litzenberger (1976), Krdlevy and Markowitz (1984), and
Chunhachinda et al. (1997a and 1997b). The segoowp of studies took estimation risk into
account by proposing a Bayesian or resample efiédientier approach using historical data together
with Monte Carlo estimation process; for exampl&eirs (1962), Kalymon (1971), Barry (1974),
Klein and Bawa (1976), Brown (1979), Chen and Brdd®83), Jorion (1986), Horst, et.al (2002),

* This paper is supported by Thailand Research F(IriRE).
aAny comment and questions please contact Sarayhaplaan at 999 Mahidol University International l€gé, Business Division

(Finance) or at 662-441-0648 ext. 1118, or via énw@arayut@mahidol.ac.th
bProfessor of Finance of Thammasat Business School



Markowtiz and Usmen (2003), and Michaud (2003).e Third group focused on the asset pricing
approach by incorporating a factor model such asGapital Asset Pricing Model (CAPM) and/or
Arbitrage Pricing Theory (APT) in the portfolio setion process, e.g., Polson and Tew (2000), and
Pastor (2000). The third group uses a factor mwdbenchmark the performance of a recommended
portfolio.  Portfolio optimization is performed &b on historical data to estimate two crucial
parameters of the model, namely expected returnvandnce-covariance matrix. Estimation risk
due to treating sample estimates as true parameerdeen taken into account in optimal portfolio
formation via Bayesian Portfolio Optimization prese

Studies regarding the effect of estimation riskaonoptimal portfolio have been conducted
by a lot of scholars. Barry (1974) stated thaiesion risk does not change the efficient setvaiit
affect the optimal portfolio. Bawa, Brown, and K¢1979) and Klein and Bawa (1977) stated that,
when estimation risk is taken into account, assgntimat security returns are generated by a
stationary multivariate normal distribution for whithe investor has a diffuse prior, the effects of
estimation risk on the selection of an optimal fmdid from a set of risky assets cause the location
but not the composition of the efficient frontier thange. Frost and Savarino (1986) suggested
portfolio selection within a Bayesian frameworkdeal with estimation risk and stated that using
classical mean to estimate expected return and atbenents of asset returns leads to suboptimal
portfolio choices resulting in a loss of investditity. Jorion (1986) indicated that uncertaintycat
parameter values leads to suboptimal portfolio @miresulting in a loss in utility if historical
average is used as a true parameter estimate oddsngnted in Jorion (1986, 1991), the James-Stein
estimator is derived from the summation of compdmena quadratic loss function using a shrinkage
function to estimate parameter values and is ueedalidate the claim that sample mean is an
inadmissible estimator. Effron and Morris (1973vé proven that the James-Stein estimator
dominates MLE with good rules of Bayesian propsrtidorion (1986, 1991) extended the work of
James-Stein to a Bayes-Stein shrinkage mean asgwamiiance parameters are known.

Britten-Jones (1999) used 20 years of data on Libtop stock indexes to test hypotheses
about the weights of mean-variance efficient péidfo The evidence documented that sampling
error in estimates of the weights of global effitiportfolios is as large as when the return veatat
variance-covariance matrix are estimated by a ticadil approach. This means that the portfolio
risks of the traditionally suggested efficient folibs will be underestimated compared with that of
optimal portfolio incorporating estimation risk. aKing estimation uncertainty in portfolio
construction process, Michaud (1998) proposed Relsafificieny™ technique introducing Monte
Carlo methods based on eight asset classe48 years historical data. Resampled Efficiency
approach solved two major drawbacks of traditigmaidtfolio namely concentrated and instability
portfoliog. Markowitz and Usmen (2003) performed experin@niportfolio performance between
resampled and diffuse Bayes portfolios and repattietl resampled efficient portfolios outperform
those of diffuse Bayégortfolios. He (2007) revised an information ugiaigg model of Treynor and
Black (1973) within a Bayesian framework accountfog alpha uncertainty. By varying level of
overall active risk budget and centering alphaterequilibrium level of zero, the result indicatbdt
pension fund managers can reflects the overallidente in the ability of active management.
However, no recommendation for a better portfatiofation strategy had been made.

This study emphasizes investigating and suggesiimgappropriate portfolio formation
strategy by applying Bayesian shrinkage estimatmmortfolio selection when uncertainty about
parameter values exists. Two major portfolio faipyastrategies are i) optimized portfolio within a
traditional mean-variance efficient and ii) optiedz portfolio applying shrinkage asset return
incorporating a factor model approach. Model ardhmdology are discussed in Section 2. The data
and descriptive statistics of sectorial returns discussed in Section 3. Section 4 elaborates
empirical evidences. The last section is the amioh.

! Eight asset classes are Canada, France, Gernagoay),JU.K., U.S. equities, and U.S. and Euros
government/corporate bonds.

? Traditional portfolio optimization yields the caentrated portfolio by which some assets never leeter the
solution and few assets are included in the optpoatfolio composition. Instability portfolio imjgs that for
any small change in input parameters cause widéugtion in results.

? Diffuse Bayesian approach and non-informative iiiglief Bayesian approach are terms used
interchangeably.



2. Model and M ethodol ogy

Estimation risk in parameters of asset return lmarireated appropriately under a Bayesian
framework with either non-informative or informadiyprior distribution to shrink value of parameter
estimate towards an equilibrium value, or grandmme&he informative prior in this study is that all
asset return characteristics comply with a factodeh such as the single index model. This means
that, if asset characteristics based on histoggatage differ from the single index model, expacte
predictive returns will be drawn toward the expdcteturn suggested by the factor model. Six
alternative approaches in constructing an optinmatfplio are explored. The first is traditional
portfolio selection treating historical estimates taue parameters. The second alternative is an
optimal portfolio based on Adjusted Beta as widesed in the industfy The third approach is
Resampled Efficiency approach averaging optimagtisi of the same ranked portfolio. The fourth
portfolio formation strategy is based on CapitakétsPricing Model (CAPM). The fifth strategy is
traditional Single Index Model (SIM) allowing forsset mispricing. The sixth alternative is an
empirical Bayesian approach with an informativepimncorporating a factor model namely Bayesian
Single Index Model (BSIM).

Given that an investor has T observations for éadividual N traded assets. Let R be asset

return matrix with dimensiom x N , m is a vector of expected returns of securities, 2ands a

population variance-covariance matrix of securiggurns. Alternative models discussed below
suggest that, by specifying different beliefs imopdistribution, portfolio selection yields diffent
results.

Traditional Mean-Variance Approach, Resampled ificy Frontier (REF), Capital Asset Pricing
Model (CAPM), and Traditional Single Index ModedIM$Approach

Within a traditional mean-variance portfolio seies framework, sample estimates are
treated as true parameters. This approach cacalked the certainty equivalence method, and
estimation risk is not taken into account. Hertbe, sample mean vector and sample covariance
matrix are major inputs in the portfolio optimizatiprocess as shown in Equations (1) and (2).

m =l:|_ﬁ, i=12...,n (1)
(R-m)(R-m)
S T_1 L, ]=12,...n (2)

where: m = sample mean vector
S = sample variance-covariance matrix

!

R =(r,,F,,....[; ) = excess return of each individual asset
=
n

number of observations
number of assets

/=11, ...,1)

Resampled Efficiency Frontier (REF) generates oleseasset returns by Monte Carlo approach
from two major parameters given that asset retéolhew multivariate normal distribution. After
each set of observed returns are generated, effitientier spanning from minimum variance
portfolio to maximum return portfolio is construdteising traditional mean variance optimization
approach. One hundred and one portfolios are mgted on each efficient frontier and
corresponding allocated weights are recorded. digtance between minimum and maximum returns

* The common adjusted beta, as suggested by Meyrith, is the weighted average between sample beta
estimate and the market beta. Adjusted be&(tr_eta) + }(betan) :
3 3

® Returns are calculated with both continuous (déffee of log price) and discrete returns (ratiadjfisted
price difference). Results based on continuousdisatete return calculations are not different.
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is equally split. Repeating the same processesd@rtime§ we have 500 different sets of parameter
inputs and 500 efficient frontiers. The originalt ®©f inputs is denoted (”0’ QO) and obtained

input sets are denoted &, ), (1>, 05), . . .,(fis0. (s00). Portfolios Ranked 1 are the

minimum variance portfolio and portfolios rankedll@re maximum return portfolios. Averaging
optimal weights of each ranked portfolio from 5(ficgent frontiers, we obtain average resample
weights. Portfolio risk and return are calculatethe last step.

Within the Capital Asset Pricing Model (CAPM) andsiagle index model approach, asset
return generating process is stated as shown itiequ3) and (4), respectively.

R=R, A 3
R=R,C+U 4)

Where: R = vector of expected excess return on eachiohai asset
R, = vector of expected excess market index return
L = vector of beta coefficient

!

a’
C= {ﬁ } = coefficient vector

U ~N(@OX®I1;) =residual matrix containing residual term of eashet.;
|; = identity matrix with rank T

Residual terms in matrix U are assumed to be inudga, serially uncorrelated, and
homoskedastic. Two crucial parameters, expectagrreand variance-covariance matrix for an
individual asset, in efficient portfolio formati@re shown below:

E(R)=R,C (5)
ol =plorf +o f, (6)
Ojj =18i'0r$1/8j’ +U§i (7)

Where: o7 = variance of an individual asset

o, = variance of market index portfolio

2
m
o’ = variance of residual terms

o;; = covariance of two individual assets

If market efficient hypothesis holds, alpha or iltercept term in the single index model will
be zero. When alpha has a non-zero value, it atelc mispricing for the set of traded assets.
Portfolio managers can outperform the market bgrdeining and investing in non-zero alpha assets.

Bayesian Single Index Model (BSIM)

Within this framework, the objective is to detenmiposterior distributionof parameter
estimates, likelihood function and prior distritmtimust be determined via the conjugate function.
He (2007) suggests the selected conjugate fundtiitim return generating process is given by
equation (8) and prior distribution of the coefict vector, C, and the variance-covariance matrix,
X, is given in equation (9)

® Number of observed returns is 500 sets as sughesidarkowitz and Usmen (2003).
" Posterioroc Likelihood X Prior.



p(RC,Z) |2 |‘% exp{—%tr(R— XC)'(R- XC)= % (8)

T

Ik exp{—%tr[SJr (C-CV,H(C-C)z Y
Where: S= (R- XC)'(R- XC)
C=(XX)'XR

p(C.Z) = p(CZ) p(Z) (9)

Where: p(C|Z) ~ N(C,,Z®V,) || 2. exp{—%tr (C—C,)V;{(C—-C)=

a!
C z[ } = coefficient vector

ﬂ'
s? 0
Voil = 05
0 0

(vo+N+1)

PE) - W(Houvg) 2] *  expl-tH,2 )

IW = Inverted-Wishart Distribution
2
H,=S"1,
S? = Average of diagonal elements of the sample resietuar matrix

Posterior distribution can be determined by cdihgcterms from the product of likelihood
function and prior distribution as shown in equat{@0) below:

p(C.Z|R) e« p(RIC,Z) p(C|Z) p(X) (10)
_T+K+4vp+N+1

o2 | 2 exp{—%tr[(C—é)V‘l(C—6)+H~}

Where:C = (V;* + XX) (V;'C, + XR)
V=Vl + XX)™
H=H,+S+C)V;'C,+CXXC-CVC

From the posterior distribution above, two indicas can be made. Given historical series of
asset returns, firstly, joint distribution of twoajor parametersp(C,X | R), follows multi-variate

normal distribution with posterior medd and posterior variancg ®V . Secondly, distribution of
variance-covariance matrip(X | R) , has an inverted-Wishart distribution with degofefreedom

v =T +v, and a scale matriki .

Construct an optimal portfolio based on the siriglex model, if an investor has a strong
belief that market is efficient and there is nopriging, alpha will be zero and the model converges
to the equilibrium model CAPM. In real world, tkeare some rooms to make abnormal return by
searching assets with nonzero alpha to capitalzenispricing phenomenon. Shrinkage Bayesian
model presented in this paper suggests that if noieg exists, estimation risk in parameter
estimates and £, should be taken into account by shrinking the éstimates to its equilibrium

value with the Bayesian adjustment factor showowel



!

~ a'
C= =V, + XX)'XR 11
M ) o

To form a portfolio that incorporates estimatioskriwe apply Bayesian concepts to alleviate
the effect of estimation risk. As discussed int®ecl, both informative and non-informative prior
distributions are applied in constructing the ogtirportfolio. Incorporating estimation risk in a
portfolio formation strategy would improve portiliperformance. To validate this claim, an
empirical test was performed.

Portfolio Performance

Two portfolio performance measurements are usekisnstudy, namely expected utility and
Sharpe’s Ratio. The ultimate goal of an investomiaximizing one’s terminal wealth leading to
maximize one’s expected utility. The first portboperformance measurement is stated below:

Max. EU = E -\(V) (12)

Where: EU = expected utility of each portfolio
E = portfolio return
L, = coefficient of degree of risk aversion; 0.521
V = portfolio variance

Given different level of degree of risk aversiorpected utility of each portfolio from each
strategy will be assessed. Among all portfolioration strategies, portfolio possesses the highest
expected utility is considered as the best perfagagortfolio.

Since only two moments are used in constructing@imal portfolio, the second portfolio
performance measurement is Sharpe’s ratio. Thesh@segy among six strategies will yield highest
Sharpe’s ratio.Ex anteportfolio performance measurements are compareditof-sampleax post
portfolio performance measurements. The bettetfgir formation strategy leads to a higher
expected utility and Sharpe’s ratio for both indaut-of-sample data.

3. Data and Descriptive Statistics

Data used in this study are monthly index returhd® emerging marketsadjusted for
dividend and emerging market price indePata are obtained from Data Stream. Nineteegrgimgy
countries with complete data are Argentina, Bragihile, China, Columbia, Hungary, India,
Indonesia, Malaysia, Mexico, Pakistan, Peru, th@igpimes, Poland, Russian Federation, South
Africa, Taiwan, Thailand, and Turkey. Quotationfseach market index are based on the same
currency, U.S. dollar. Periods covered in thiglgtincorporate long range of time from 1995 to 2008
which incorporates global crises. Divided into twob-periods, 1995-2001 and 2002-2008, had
covered global financial cris€s Sample period are total sample period, and twopsulds. Total
sample period ranges from January 1995 to Decer@®@8. The first sub-period ranges from
Janléellry 1995 to December 2001 and the second sigatpanges from January 2002 to December
2008".

8 List of countries in emerging markets bases onEE&®erging market list.

°® Emerging market price index is obtained from D&tt@am under DS Mnemonic TOTMKEK in U.S. dollar
unit.

19 Global financial crises covered the followings mge Asian financial crisis in 1997, Long Term Gapi
Management (LTCM) crisis in Japan and Russia irB19R bubble burst and dot com crisis in 2000,
bankruptcy scandal of ENRON in late 2001, bond reickisis in 2003, and US subprime crisis in 2048,

" Thank you for comments from reviewers regardingdrinflation in some emerging markets during pesiod
1990s and price jumps during crisis period. Ssamples in this study are total market adjusteckdridexes,
considered as big portfolios containing large amatimssets, and index returns are calculatedricepéage
during long range of time. Therefore, hyperinfiatin some emerging markets has insignificant effec
market return indexes. Moreover, objective of #tigly is to point out that by incorporating nefoimation,
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Descriptive statistics are in Panel A and B of TABN'>. Panel B reports information

ratio,iiz, of each country for all periods studied. Dedorgresults from Panel A indicate that all
emerging markets exhibit non-zero alpha with pesitieta coefficient. Only a few countries with
non-zero alpha are statistically significantly difint from zero while all beta coefficients are
statistically significantly different from zero. his could be interpreted that emerging markets risk
and expected return relationship conforms to mogertfolio theory and there is mispricing in some
emerging countries. Fund managers can insert ¢hair belief in determining mispricing countries
and recognize the abnormal return from such pdotfldrmation strategy. Moreover, the average
returns in each sub-period are not significantlifedent. Based on total sample period, average
monthly index returns range from -0.44 percent.8bPercent, from -1.15 percent to 5.79 percent for
the first sub-period, and from -0.72 percent to51p@rcent for the second sub-periods. Unlike
average index return, standard deviations or gskls for each country are significantly differand
larger than average return. Based on total sampkx return, standard deviations range from 4.79
percent to 15.59 percent, from 5.67 percent to3®&rcent in the first sub-period, and from 3.72
percent to 10.37 percent in the second sub-period.

The information ratio, as shown in Panel B, indsathat the mispricing of each country is
large as each value differs from zero consideralifpr the total sample period, information ratio
ranges from -136.796 (Taiwan) to 703.11 (Mexicopnf -133.575 (Colombia) to 467.17 (South
Africa) for the first sub-period, and from -602.6ZBaiwan) to 462.27 (Colombia). It can be
observed that the spread of variation of infornmatratio was wider in the second sub-period
reflecting the recent subprime financial crisis.heThigh value of the information ratio is the
characteristic which indicates that the shrinkaggeBian would apply.

4. Empirical Evidence

Theoretically, an ideal estimator would yield tlean® result as the true or future observed
value. The only situation in which an ideal estionavould exist is when there is perfect informatio
for an estimated parameter. Practically, an ideimator is impossible due to lack of perfect
information. Thus, a good estimator is the beat tan be expected. The six different estimating
strategies are: traditional mean-variance (EV),uat§d Beta (AB), Resampled Efficient Frontier
(REF), Capital Asset Pricing Model (CAPM), Singledéx Model (SIM), and Single Index Model
incorporating shrinkage Bayesian factor namely BayeSingle Index Model (BSIM).

In this study, the realized or observed indusindex return is treated as the true average
return. Estimation error or mean squares foreeastr is defined as the difference between true
average return and estimated mean return for ezatrs Estimated values from each strategy are
defined aex anteestimates and observed or realized returns ameedefisex postvalues.

For each period, optimal weights are computedeéah strategyEx anteportfolio return is
computed for the following out of sample month. eThst sub-period, ranging from January 1995 to
December 2001, is the base window for the optimeigits of the first period.Ex anteportfolio
returns are computed and recorded for the nexbgyerihich is January 2002. Observed out of
sample orex postreturn in January 2002 for each country is readid@sed on the optimal weights
from the ex anteportfolio. The same process is repeated for dworsd sub-period ranges from
January 2002 to December 2008. HExepostreturn is out of the sample observed in Januafp20
From theseex anteand realized monthly returns and average portfiadik, the expected utility and
Sharpe’s ratios of those portfolios are comparédbetter portfolio strategy would yield a higher
expected utility and Sharpe’s ratio and lower défeces betweeex anteandex postaverage values.

price jumps during financial market crises, in agsieing via Bayesian adjusted factor could imggortfolio
performance.

2 Emerging market indexes are drawn from Data Str&®aTOTMK, which are available during 1990s with
the same base of 100.



TABLE 1: Descriptive Statistics of index returns. Threequs are explored, total period ranges from Jané®5 to December 2008, the first sub-period rarigem
January 1995 to December 2001, and the secondesiddpanges from January 2002 to December 20a8nk¥érs in parentheses are t-statistics.

Pand A
Alpha Beta F-Stat Average Return Standard Deviation
Country Second Second First Second
Total First Sub- Second Sub- Total First Sub- Second Sub- Total First Sub- Sub- Total First Sub-  Sub- Total Sub- Sub-
Period period period Period period period Period period period Period period period Period period period
0.03344" 0.06640" 0.00389 1.04748 1.24056" 0.95713" 45.00" 20.07" 51.29™ 3.35% 5.79% 0.98% 15.59% 19.34% 10.37
Turkey (-3.15) (-3.47) (-0.43) (-6.75) (-4.48) (-7.16)
Russian 0.01905" 0.03654" 0.00372 1.37491 1.64265" 1.14265" 135.70" 63.23" 123.66" 1.92% 2.53% 1.08% 14.01% 17.20% 9.914
Federation (-2.39) (-2.56) (-0.54) (-11.83) (-3.95 (-11.12)
0.00953 0.02532 -0.00442 0.79591  0.86536 0.76185" 93.13" 35.99° 11149 | 0.96% 1.94%  003%| 9.06%  10.83%  6.759
Hungary (-1.72) (-1.72) (-0.91) (-9.82) (-5.99) 10:56)
0.00894"  0.01418" 0.00593 0.69188"  0.80156" 0.58642" 171.37"  75.67°  145.71° | 0.90% 087%  0.96%|  6.64% 8.00% 4.939
Mexico (-2.51) (-2.23) (-1.82) (-13.30) (-8.70) (-12.07)
_ 0.00892°  0.01287 0.00643 088102  0.98651" 0.80493" 241.00°  106.19°  162.82° | 0.90% 0.61% 1.14%|  7.89% 9.08% 6.649
Brazil (-2.29) (-1.95) (-1.52) (-15.49) (-10.31) -12.76)
0.00781 0.00479 0.00869 0.90782  0.79943" 0.99837" - " .
China (-1.08) (:0.37) (1.20) (8.52) (-4.30) en) 69.44 18.30 85.04 0.79% -0.07% 1.49%| 11.30%  12.93% 9.419
. 0.00648"  0.01084" 0.00366 0.67337  0.74886" 059815" | 21313  11518"  102.03" | 0.65% 057%  0.74%| 6.14%  6.77%  5.409
South Africa (-2.09) (-2.25) (-0.92) (-14.88) (-18) (-10.10)
0.00564 0.00055 0.00849 0.78962  0.59681" 0.98873" 113.41% 2621 12391° | 057%  -0.35%  1.46%| 8.48% 8.38% 8.579
India (-1.13) (-0.07) (-1.43) (-10.80) (-5.12) (-11.13)
0.00526 0.01573 -0.00379 0.71096  0.72058" 0.71894" 68.66" 22.43" 93.56" 0.53% 1.08% 0.07% 8.95% 10.75% 6.629
Poland (-0.91) (-1.50) (-0.76) (-8.45) (-4.73) 69
0.00494 0.00347 0.00586 0.78745  0.75247" 0.81547" 75.96" 22.49" 89.44" | 050%  -017%  1.09%| 956% = 11.21%  7.599
Indonesia (-0.82) (-0.32) (-1.01) (-8.91) (-4.74) (-9.46)
0.00493 -0.00724 0.01628 0.43162" 0.33934" 0.51276" 39.20™ 10.13" 33.63" 0.50% -0.96% 1.95% 6.84% 7.07% 6.399
Columbia (-1.04) (-0.98) (-2.74) (-6.24) (-3.18) (-5.80)
0.00434 0.00131 0.0058 0.51424  0.44296" 0.56970" 72.47" 23.08" 5573" | 0.44%  -017%  0.93%| 6.31% 6.54% 6.029
Peru (-1.08) (-0.21) (-1.13) (-8.76) (-4.80) (M4
0.00359 -0.00085 0.00701 0.46288  0.53493" 0.34748" 15.16™ 8.59™ 5.91™ 0.36% -0.45% 0.92% 10.63% 12.01% 9.014
Pakistan (-0.46) (-0.07) (-0.73) (-4.06) (-2.93) -2.43)
0.0033 0.00885 0.00422 0.78893  1.01402" 0.59031" 81.50" 44.89 43.36 0.34% 0.19% 0.799 0.65%  11.78% 6.7
Argentina (-0.54) (-0.85) (-0.70) (-8.82) (-6.70) (-6.58)
0.0001 -0.00123 0.00392 045985 059743 0.32677" 132.26 9245  4397" | 001%  -053%  0.60%| 479% = 567%  3.729
Chile (-0.04) (-0.29) (-1.19) (-11.38) (-9.62) £8)
-0.00165 0.00279 -0.00245 0.66056  0.90756" 0.44679" 92.46" 51.01" 7743" | -0.16%  -0.34%  0.03%| 7.72% = 10.13%  4.319
Malaysia (-0.34) (-0.32) (-0.78) (-9.43) (-7.14) -8.80)
-0.00254 0.00699 -0.01154 0.83599" 1.00786" 0.69489" 177.67" 93.60" 113.59" -0.25% 0.01% -0.72% 8.02% 9.54% 6.139
Taiwan (-0.59) (-0.97) (-2.64) (-13.29) (-9.67) (-10.66)
-0.00256 -0.00183 -0.00085 0.63556  0.85783" 0.41319" 87.64" 62.00" 28.44" -0.25% L0.77% 0.17% 7.44% 9.03% 5.479
Philippines (-0.55) (-0.24) (-0.16) (-9.41) (-7.87) (-5.33)
-0.00453  -0.00394 -0.00248 0.93898  1.10057 081091 | 10199 422"  91.16" | -044%  -115%  0.26%| 1057%  13.05%  7.51
Thailand (-0.70) (-0.34) (-0.43) (-9.98) (-6.50) -9.65)

* ** and *** indicates significant at 10%, 5%, drl%, respectively.



TABLE 1(continued): Descriptive Statistics of index returns. Threaqus are explored,
total period ranges from January 1995 to Decemb@8 2the first sub-period ranges from
January 1995 to December 2001, and the secondesidzipanges from January 2002 to
December 2008. Numbers in parentheses are ttsisitis

Panel B

Information Ratio

Country Total Period  First Sub-period Second Sub-perigd
Turkey 295.7651 181.6571 48.3165
Russian Federation 300.5328 179.6849 78.2327
Hungary 308.6629 255.3434 -188.4281
Mexico 703.1102 350.4998 557.6252
Brazil 587.5088 294.6973 358.7845
China 148.1109 28.7707 164.5916
South Africa 674.1654 467.1711 231.4469
India 224.6173 8.5055 239.0569
Poland 158.2308 142.5708 -152.1374
Indonesia 134.6862 28.8828 174.9011
Columbia 219.6666 -133.5755 462.2749
Peru 268.1393 32.2578 221.1845
Pakistan 58.9806 -5.3772 76.1875
Argentina 87.5264 81.0338 116.5557
Chile 13.5179 -66.9743 358.3304
Malaysia -71.5389 36.3157 -210.6151
Taiwan -136.7961 135.1681 -602.6266
Philippines -119.5397 -32.4259 -31.299
Thailand -109.0524 -28.7929 -76.1938

TABLE 2 shows that every portfolio strategy alway&restimates true parameter valuges.
ante average excess portfolio returns are higher thaset ofex postaverages for all strategies.
Except the first sub-period, portfolios formed lajusted beta approach (AB), Resampled Efficiency
Frontier (REF), market equilibrium hypothesis agmo (CAPM) and Bayesian approach (BSIM)
outperform the forecastEx anteexcess portfolio returns are expected to be -Ogitemt, 2.32
percent, -0.36 percent, and 2.67 percent per mimnthortfolios formed by AB, REF, CAPM, and
BSIM, respectively whereas tlex postexcess portfolio returns are 1.50 percent, 3.0tgm, 1.50
percent, and 3.08 percent per month. The Baye3mimkage Portfolio incorporating single index
model strategy (BSIM) is expected to have the lsirggerage excess portfolio return compared with
other strategies.Ex anteaverage excess portfolio returns for BSIM are 288cent per month or
28.68 percent per annum, 2.67percent per montt2 @3percent per annum, and 2.70 percent per
month or 32.40 percent per annum in total peribd, first sub-period, and the second sub-period,
respectively. The lowesx anteaverage excess portfolio returns are portfoliostarcted based on
CAPM in all studies periods.Ex postaverage excess portfolio return for the BSIM pmictf
outperforms those of other strategies in total dampriod and the first sub-period. For total seemp
period, BSIM yields minimum loss of 1.07 percent pgnth or loss of 12.84 percent per annum
whereasex postreturns of other strategies yield larger loss eanfjom 2.31 percent per month or
27.72 percent per annum (CAPM strategy) to 5.48querper month or 65.16 percent per annum (EV
strategy).



TABLE 2: Portfolio Performance of Alternative Estation Methods: Sharpe’s Ratio

Monthly Excess Portfolio Return

Strategy Ex-ante Ex-post
Total Period (TP) Sub-Period 1 (SP1) Sub-Perio8R2| Total Period (TP) Sub-Period 1 (SP1) Sub-Be&2i(SP2)
Mean-Variance 1.84% 2.74% 1.26% -5.43% -6.38% -1.46%
AB -0.02% -0.47% -0.44% -2.31% 1.50% -2.47%
REF 2.04% 2.32% 1.21% -2.84% 3.01% -1.44%
CAPM -0.02% -0.36% 0.54% -2.31% 1.50% -2.80%
SIM 1.94% 2.42% 1.27% -3.44% -4.03% 1.65%
BSIM 2.39% 2.67% 2.70% -1.07% 3.08% -3.21%
Monthly Excess Portfolio Risk
Strategy Ex-ante Ex-post
Total Period (TP) Sub-Period 1 (SP1) Sub-Periof22) Total Period (TP) Sub-Period 1 (SP1) Sub-B&i(5P2)
Mean-Variance 8.84% 10.56% 4.36% 0.93% 1.37% 0.20%
AB 2.75% 3.39% 2.01% 2.75% 7.73% 3.37%
REF 0.29% 0.25% 0.19% 1.05% 0.87% 1.38%
CAPM 2.75% 3.39% 3.60% 2.75% 7.73% 3.37%
SIM 9.22% 10.85% 5.96% 9.21% 10.77% 5.26%
BSIM 7.59% 9.22% 5.27% 7.56% 9.18% 5.26%
Sharpe’s Ratio
Ex-ante Ex-post
Strategy Total Period (TP) Sub-Period 1 (SP1) SettieB 2 (SP2) Total Period (TP) Sub-Period 1 (SP1)Sub-Period 2 (SP2)
Mean-Variance 0.1949 0.2189 0.2824 -10.1536 -1.5029 -10.4492
AB -0.0093 0.2410 0.2038 -1.1015 -1.6834 -0.3573
REF 0. 2089 0.2622 0.3830 -0.3681 0.1648 -0.9629
CAPM -0.0075 -0.1337 0.1974 -1.1015 0.3107 -1.2359
SIM 0.2038 0.2067 0.2113 -0.3573 -0.3198 0.3127
BSIM 0.3147 0.2900 0.5111 -0.1409 0.3357 -0.6091

Note: Ex anteandex postportfolio monthly return and risk are reportedotdl sample periods range from January 1995 to idbee 2008. Two out-of-
sample periods are January 1996 and January 2009.
* denotes the highest Sharpe’s Ratio compared adiffegent portfolio strategies.
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TABLE 3: Portfolio Performance of Alternative Esation Methods: Expected Utility

Total Period (TP)

Expected Utility

Sub-Period 1 (SP1)

* denotes the highest Expected Utility given thriéieient risk aversion level (A), A = 0.5,1, andé@dmpared among different portfolio strategies.

11

Strategy A=05 A=1 A=2 A=0.5 A=1 A=2
Mean-Variance 0.00553 0.00196 -0.00265 0.00452 0200 -0.00641
AB -0.00052 -0.00076 -0.00125 -0.00546 -0.00607 00691
REF 0.00445 0.00088 -0.00368 0.00239 -0.00206 8200
CAPM -0.00048 -0.00072 -0.00118 -0.00419 -0.00494 0.00593
SIM 0.00603 -0.00149 -0.01288 0.00721 -0.00157 1846
BSIM 0.06309 0.05967 0.05283 0.06488 0.06001 0.05026
Expected Utility
Sub-Period 2 (SP2)
Strategy A=0.5 A=1 A=2
Mean-Variance 0.01683 0.01376 0.00865
AB 0.00627 0.00577 0.00511
REF 0.01317 0.01083 0.00669
CAPM 0.00658 0.00594 0.00512
SIM 0.01690 0.01350 0.00669
BSIM 0.06736 0.06547 0.06170




Among six portfolio formation strategies, traditarportfolio approach (EV) has the
largest variation as its monthly excess portfolgk rfluctuates widely while other formation
strategies have intaeix anteandex postportfolio risk. As documented, thex antemonthly
portfolio risk of EV portfolios are ranges from 8.8ercent, 10.56 percent, and 4.36 percent to
0.93 percent, 1.37 percent, and 0.20 percent &h $saimple period, the first sub-period, and the
second sub-period, respectively. The lowest deviabetweenex anteand ex postaverage
excess portfolio risk is that of BSIM.

The Bayesian Single Index Model (BSIM) or Bayedrantfolio incorporating a factor
model performs best oan ex anteand ex postbasis. Fromex anteSharpe’s Ratio, BSIM
produces the largest Sharpe’s Ratio and the piortfoihstructed based on CAPM approach has
the lowest ratio. BSIM'&x anteSharpe’s Ratios are the largest at 0.31, 0.290&1L in the
total sample period, first sub-period, and secarderiod, respectively. The traditional mean-
variance efficient portfolio approach (EV) yieldetlowest Sharpe’s Ratio of -10.15, -1.50, and
-10.45 based orex postaverage in each of sample period. Among optimipedfolio
strategies, it can be concluded that étiepostperformance of the Bayesian portfolio approach
exceeded that of the traditional approach.

An alternative measure of portfolio performancettie expected utility taking into
account portfolio risk, return, and degree of rslersion. Three degrees of risk aversion are
used to explore effect of investor’s risk prefeemn portfolio performance. The higher the
expected utility indicates the better performan€e gortfolio. Table 3 exhibits maximum
expected utility from different portfolio formatiostrategy given different degree of risk
aversion (A), A = 0.5, 1, and 2. Portfolios consted by BSIM approach yield the highest
expected utility for all levels of risk aversiongiees. Results from Table 3 reassure that
allowing for mispricing in asset prices in Bayesiportfolio formation strategy; BSIM
portfolios outperform those of traditional approach

5. Conclusion

Empirical results indicate that when estimation artainty is taken into account, the
shrinkage Bayesian strategy incorporating singldexn model (BSIM) outperforms the
Traditional portfolio selection strategy such asamgariance efficient, Adjusted Beta model,
Resampled Efficient Frontier model, CAPM, and sinigidex model based on batk anteand
ex postperformance. This study not only demonstratesbi@eefits from using shrinkage
estimators to alleviate estimation uncertainty pEobbut also suggests an appropriate portfolio
selection strategy, namely an optimized portfatioorporating a single index model or BSIM.
Shrinkage Bayesian model presented in this papgyests that if mispricing exists, estimation
risk in parameter estimates; and £, should be taken into account by shrinking the two

estimates to its equilibrium value with the Bayasdjustment factor. The major contribution
of this study is that allowing for asset mispriciagd applying Bayesian shrinkage adjusted
factor to each asset’s alpha given that alphabeilshrunk toward market equilibrium condition
or at zero alpha value, a single factor namely exawarket return is adequate in alleviating
estimation uncertainty.
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