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Gaussian Slug � Simple Nonlinearity Enhancement to the 1-Factor and Gaussian Copula Models in 

Finance, with Parametric Estimation and Goodness-of-Fit Tests on US and Thai Equity Data 

1
Poomjai Nacaskul & Worawut Sabborriboon 

Abstract � A bivariate normal distribution, with the attendant non-

analytically integrable p.d.f., lies at the hearts of many financial 

theories. Its derived Gaussian copula ostensibly does away with the 

normality assumptions, only to retain the linear (Pearson�s) correlation 

measure implicit to said bivariate normal p.d.f. In financial modelling 

context, the Gaussian copula suffer from at least three setbacks, namely 

its inability to capture (extreme) tail, asymmetric (upside vs. downside), 

and nonlinear (diminishing) dependency structures. Noting that various 

fixes have been proposed w.r.t. the former two issues, (i) this paper 

attempts to address the nonlinearity with the proposal of a bivariate 

%Gaussian Slug� distribution (ii) from which a derived copula density 

function quite naturally and parsimoniously captures a particular 

nonlinear dependency structure. In addition, (iii) this paper devises a 

simple, intuitive formulation of copula parameter estimation as a 

minimisation of a chi-square test statistics, (iv) whose resultant value 

readily lends itself to the widely popular statistical goodness-of-fit 

testing. Tests were performed comparing independent vs. Gaussian vs. 

%Gaussian Slug� copulas on weekly US and Thai equity market index 

and individual stock returns data, all available on Reuters. 

1. Introduction 

A bivariate normal distribution, with the attendant non-analytically integrable p.d.f., lies at the 

hearts of many financial theories: from the Treynor/Sharpe/Lintner/Mossin Capital Asset Pricing Model 

(CAPM) and subsequent 1-factor market/credit risk models, which presuppose joint normality of market 
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and individual risk factors, to the Vasicek/Gordy Asymptotic Single Risk Factor (ASRF) model 

underlying the Basel II Internal-Ratings Based (IRB) approach to calculating minimal regulatory credit-

risk capitals, to the Duffie-Singleton/Li CDO pricing methodology, which by utilising Gaussian copula 

[2][6][10] ostensibly does away with the normality assumptions for marginal loss distributions, only to 

retain the linear (Pearson"s) correlation measure implicit and integral to said bivariate normal p.d.f. 

Indeed, from the advent of Markowitz Modern Portfolio Theory (MPT) of Pareto optimal asset 

allocation down to contemporary Value-at-Risk (VaR) measure of market risks in the aggregate, questions 

have been raisedand widely controverted sinceabout the assumed normality of the marginal 

distributions of asset returns. By and large, this line of inquiries has been superseded by misgiving w.r.t. 

the dependence structure between risk factors as implied by the widely adopted Gaussian copula.
2
 

One line of inquiry is whether the Gaussian copula can adequately capture dependency in the 

(extreme) tails of the marginal distributions. In their seminal paper on testing the Gaussian copula 

hypothesis for financial-asset dependencies, Malevergne & Sornette (2003) [4] adapted the Kolmogorov 

as well as Anderson-Darling distances as their distributional test metrics.
3
 In particular, Mashal & 

Zeevi(2002) [5], and similarly Chen, Fan, Patton(2004) [1], exploited the fact that the Student�s t 

distribution is effectively a heavy-tailed generalisation (and therefore embeds as a special case) of the 

normal distribution. Söderberg (2009) [9] then applied both methods to good effect in testing the Gaussian 

copula on the Swedish stock market.
 4
 Another line of inquiry is whether %upside� dependency needs be 

symmetric with the %downside� leg. For equity, this is related to the well-known, post-Black Monday 

volatility skew phenomenon, where correlations rise dramatically during downturns, then revert to lower 

level once recovery takes place. A less obvious investigation in the foreign exchange market is whether 

                                                        
2
 In other words, joint normality has two components, normal marginals and Gaussian copula, so going 

beyond normal marginals whilst retaining the Gaussian copula constitutes but a partial generalisation. 
3
 They expressly highlighted how the Kolmogorov measure is Gmore sensitive to the deviations occurring 

in the bulk of the distributionsH, while the Anderson-Darling measure is Gmore accurate in the tails of the 

distributionsH. 
4
 Although such tail dependency issues arose vis-à-vis market returns, i.e. random variables with 

distributional support over the real number line, similar issues may arise w.r.t. random variables with 

distributional support over the positive interval, i.e. dollar values of operational/credit losses. 
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%joint appreciation� and %joint depreciation� are indeed asymmetric, and whether dependency relation is 

time-conditional Patton (2006) [8]. 

Our line of inquiry is whether the inherently linear dependence structure imposed by the Gaussian 

copula is appropriate for financial modelling. For instance, in an emerging equity market dominated by a 

few large stocks, it is anecdotally observed how initially these leading stocks would be the ones that move 

very quickly in response to (perhaps because they are leading) the general market trends, but as the overall 

index moves deeper in the negative territory, these core stocks seem to hold value better as long-term 

bargain hunters come in, dismissing what they perceive as %overshot� market sentiments. Conversely, in a 

strong rally, international capital funds may opt to take early profits in the core stocks they principally 

built their cross-country investment diversification positions on. In a sense, betas for these lead stocks 

peak in the middle and taper off at either end. This paper is motivated initially from this nonlinearity 

consideration in particular. Although not discussed further in this paper, should one take up the 

demarcation between high-frequency/low-impact vs. low-frequency/high-impact operational losses and 

pursue an extended Gdiminishing dependencyH hypothesis, i.e. distinguishing high-frequency/low-

impact/high-dependency vs. low-frequency/high-impact/low-dependency operational losses, a similar 

nonlinear extension to copula modelling would be just as essential, if not more so.
5
 

In particular, we go back to the bivariate normal distribution in an attempt to endow it with 

nonlinear dependency. First, we write out a 5-parameter a bivariate normal p.d.f. (1):  
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The conditional expectation of Y is a linear function of x thus:  
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The aim of this paper is simply to find an (analytically simple) alternative to, and possibly a 

generalisation of, (1) for which an expression derived analogously to (2) is nonlinear. The resulting 

bivariate distribution is called a %Gaussian Slug�, for a reason which will become intuitively/visually 

obvious. This is done in section 2, on top of which section 3 then derives a corresponding copula density 

function. Section then 4 formulates and proposes a simple, intuitive method for optimising a copula fit 

over the relevant parameter space, one which readily lends itself to Pearson"s chi-square (goodness-of-

fit) test.
6
 Section 5 demonstrates how the proposed copula is used and tested against weekly US as well as 

Thai equity market index and individual stock returns data downloaded from Reuters. In summary, our 

paper introduces innovations in all four areas: distribution, copula, estimation, and testing. 

2. The (Gaussian Slug) Distribution 

This paper is motivated by the inability of linear dependence structure to implement marginally 

decreasing dependency, i.e. whereby a response to stimulus is positive throughout, but the sensitivity 

peaks and wanes, in essence a mixture between linear and sigmoidal responses.
7
 In other words, we want 

conditional expectation of Y to be a nonlinear function of x of the form:  

[ ]
}response

Sigmoidal
response
linear

xxxY )(℘++=Ε γβα
876

 
(3) 

Indeed there are a number of alternatives available:  
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 Incidentally, Fermanian (2005) [3] and Panchenko (2005) [7] both proposed a goodness-of-fit test for 

copulas, the former non-parametrically, the latter parametrically. We believe our approach is much 

simpler than either one. And unlike Malevergne & Sornette (2003) [4], there is no simulation involved. 
7
 Another motivation could be to model the Grun-awayH effect, i.e. whereby a response to stimulus is 

positive throughout, but this time the sensitivity keeps increasing at both ends, essentially reversing the 

roles between the response and the stimulus, i.e. instead of 3)( xxy ∝ , it would be 3)( xxy ∝ , etc. 



 5 

[ ]

[ ]
[ ] ( )
[ ] 3

2

2

2

)(

1ln)(harcsin,)(harcsin)(
1

1
)tanh(,)tanh()(

1
)(

xxxY

zzzxxxY
e

e
zxxxxY

e
xxxY

iv

iii

z

z

ii

xi

βα

βα

γβα

γ
βα

+=Ε

++=+=Ε
+
−

=++=Ε

+
++=Ε

−

 (4) 

It turns out that in order to introduce such nonlinearity while keeping closest to the original 

Gaussian functional form, an expedient choice is to modify the bivariate normal p.d.f. via a simple change 

of variable, again, for which a number of alternatives are available:  
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For simplicity, this paper considers the cubic function, hence the following kernel function:  
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For a bivariate distribution proper, a normalising term must be found. Unfortunately, although 

indeed analytically expressible
8
, the expression is rather messy, involving gamma and so-called 

(Kummer"s) confluent hypergeometric function of the first kind:  
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Writing it all out yields the following p.d.f. proper:  
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Unfortunately, we have moved from a distribution which is location-scale invariant w.r.t. both 

random variates x and y, to a distribution which is merely location invariant w.r.t. the random variates x. 

The trick then is to first reduce this 5-parameter p.d.f. into a 1-parameter standard Gaussian Slug 

distribution:  
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Then reintroduce the conditional means and variance parameters as a simple linear transformation 

to obtain the 5-parameter Gaussian Slug distribution. In summary:  
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We now have one working bivariate distribution whose conditional expectation has the %S� shape 

resembling common gastropod mollusc, hence a %Slug� (Figure 1, Figure 2). 

  

Figure 1: Bivariate Normal vs. %Gaussian Slug� p.d.f. L 3D Plots 

  

Figure 2: Bivariate Normal vs. %Gaussian Slug� p.d.f. L Contour Plots 
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Whereas with a bivariate normal distribution, the conditional expectation of Y is, as noted in (2), a 

linear function of x, with our Gaussian Slug distribution, the conditional expectation of Y, i.e. the value of 

y that maximises the conditional distribution given x, is a cubic root of x as desired thus: 
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Note how it would now be incorrect to refer to ρ  as the correlation parameter, as per normal 

distribution. So when they appear together, it would be advisable to write Gaussianρ  for the old correlation 

parameter and ugGaussianSlρ  for the new (Gaussian Slug) dependency parameter. 

In terms of estimation, the advantage to forcing our new distribution to remain location-scale 

invariant in this form is that the means and variance estimates are as before, which leaves only the 

question of how to estimate the dependency parameter. Here, in analogy with simple regression analysis
9
, 

we can use (11) as the fitting function, then define an Ordinary Least Square (OLS) estimate
10
 of ρ  as ρ̂  

that, given the data set ( ){ }n

iii yx 1, = , minimises the fit error:  
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3. The (Gaussian Slug) Copula 

Recall that a Gaussian copula function is constructed as a bivariate standard normal c.d.f. of the 

inverses of univariate normal c.d.f. thus:  

                                                        
9
 However, the analogy is not perfect, as we are not assuming uniform noise over a cubic root of x, as 

would be the case of a nonlinear regression, hence the un-weighted error terms assign less weights than 

perhaps ideal to %fitting error� as x goes away from its average, i.e. as Xx µ−  increases. 

10
 Alternatively, given an n-pair sample data, ( ){ }n
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does not yield a simple solution for an arbitrary sample size n. 
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From which the corresponding Gaussian copula density is given by:  
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Constructing a Gaussian Slug copula requires modification only w.r.t. the bivariate integrand:  
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From which the corresponding Gaussian Slug copula density is given by:  
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We now have one working bivariate copula whose dependency relation has the %S� shape 

resembling common gastropod mollusc, hence a %Slug� (Figure 3, Figure 4). 
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Figure 3: Standard Gaussian vs. %Gaussian Slug� Copula Density L 3D Plots 

  

Figure 4: Standard Gaussian vs. %Gaussian Slug� Copula Density L Contour Plots 

The next section details our simple, intuitive approach to constructing and utilising the chi-square 

statistics: firstly as the error criterion for optimising a fit over the copula density function�s parameter 

space, and secondly as a goodness-of-fit statistics, as per the widely popular Pearson�s chi-square test. 
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4. Chi-Square Error Criterion and Goodness-of-Fit Test for Copulas 

Our methodology
11
 is as follows. 

1. Transform the original bivariate data from its sample space within 2ℜ  (e.g. Figure 5, Figure 

6 L left plots) to within 2]1,0[  (e.g. Figure 5, Figure 6 L right plots), each axis via its own 

univariate empirical c.d.f. 
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Figure 5: Scatter Plots of "NYSE Index" vs. "Coca Cola" returns L %actual� (left) & %[0,1]� (right) 
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Figure 6: Scatter Plots of "SET Index" vs. "Siam Cement" returns L %actual� (left) & %[0,1]� (right) 

2. Partition each 2]1,0[  %transformed sample space� into cells, i.e. 25 square cells of equal size 

and perform sample counts within each cell (e.g. Table 1 & Table 2, each with 500 points). 

Call this the observed frequency matrix. 
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 Although the method generalises to any copulas, our exposition is restricted to bivariate ones. 
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Oij [0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1] 

(0.8,1] 9 18 14 18 41 

(0.6,0.8] 12 15 16 32 25 

(0.4,0.6] 14 21 27 24 14 

(0.2,0.4] 19 27 24 18 12 

[0,0.2] 46 19 19 8 8 

Table 1: Uniformed "NYSE Index" & "Coca Cola" Returns – Observed Frequencies 

Oij [0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1] 

(0.8,1] 1 5 12 24 58 

(0.6,0.8] 3 9 28 35 24 

(0.4,0.6] 14 27 25 21 14 

(0.2,0.4] 19 37 24 16 4 

[0,0.2] 63 22 11 4 0 

Table 2: Uniformed "SET Index" & "Siam Cement" Returns – Observed Frequencies 

3. For any bivariate copula, integrate the copula density over the areas corresponding to the cell 

boundaries. Multiply each cell by the total number of data points. Call this the expected 

frequency matrix (i.e. expected cell populations consistent with the specified copula density). 

For example, performing 25 double integrations w.r.t. the Gaussian copula density 

parameterised by 5.0=ρ  yields Table 3 (note: a symmetric matrix); whereas, performing 25 

double integrations w.r.t. the Gaussian Slug copula density parameterised by 5.0=ρ  yields 

Table 3 (note: an asymmetric matrix). Note how linearity of dependency structure now 

translates to symmetry of the corresponding expected frequency matrix; whereas, nonlinearity 

of dependency structure now translates to asymmetry of the corresponding expected 

frequency matrix. Incidentally, the un-parameterised independent copula density translate 

into uniform expected frequencies, i.e. 500 points divide evenly into 20 data points for each 

of the 25 cells. 

Eij [0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1] 

(0.8,1] 4.2 10.2 16.6 25.4 43.6 

(0.6,0.8] 10.2 17.4 21.9 25.2 25.4 

(0.4,0.6] 16.6 21.9 22.9 21.9 16.6 

(0.2,0.4] 25.4 25.2 21.9 17.4 10.2 

[0,0.2] 43.6 25.4 16.6 10.2 4.2 

Table 3: Consistent with the Gaussian copula density with 5.0=ρ  – Expected Frequencies 
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Eij [0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1] 

(0.8,1] 2.8 6.4 10.5 16.7 63.7 

(0.6,0.8] 14.0 20.3 22.8 23.3 19.6 

(0.4,0.6] 16.6 21.9 23.0 21.9 16.6 

(0.2,0.4] 19.6 23.3 22.8 20.3 14.0 

[0,0.2] 63.7 16.7 10.5 6.4 2.8 

Table 4: Consistent with the Gaussian Slug copula density with 5.0=ρ  – Expected Frequencies 

4. Calculate the chi-square statistics. Recall that it is given by:  
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5. For the purpose of fitting the copula density parameter, this )(2 ρχ  defines our error 

criterion to minimise. Thus for our Gaussian Slug copula:  

( )

5,,1,,),,()(

,
)(

)(
)(min*

2.0

2.02.0

2.0

2.02.0

5

1

5

1

2

2

K=









=











 −

==

∫ ∫

∑∑

− −

= =

jidvduvucExpected

Expected

ExpectedObserved

j

j

i

i

Slug
Gaussian

ij

j i ij

ijij

ρρ

ρ

ρ
ρχρ

ρ

 (18) 

6. For the purpose of testing the goodness-of-fit of the parameterised copula density, this 2χ̂  is 

precisely our test statistics, as per Pearson�s chi-square test. Thus, with 16 degrees of 

freedom, at the %99%100)1( =−α  confidence level, reject the copula whenever 2χ̂  

reaches or exceeds 32 in value
12
. 

                                                        

12
 Where the Excel function "CHIINV(0.01,16)" yields 31.99993. 
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5. Testing (Gaussian Slug) Copula for Nonlinear Dependencies in Equity Returns 

For our purpose
13
, the x-data will represent some kind of market/index returns, while the y-data 

will represent some kind of individual-stock returns. Our US & Thai data consist of 500 weekly (January 

2
nd
, 2000 L August 2

nd
, 2009) equity market/index and individual-stock returns. 

Three alternative copula density functions available for testing are thus: (i) the un-parameterised 

independent copula density, (ii) the Gaussianρ -parameterised Gaussian copula density, and (iii) our 

ugGaussianSlρ -parameterised Gaussian Slug density. Indeed for both Gaussian and Gaussian Slug copulas, 

the parametric search/optimisation is rather restricted, i.e. )1,0(, ∈ugGaussianSlGaussian ρρ , so for most 

cases, a simple bisection would suffice as an optimisation routine. For illustration, we simply ran through 

nine values each, i.e. calculating the chi-square test statistics for }9.0,,2.0,1.0{ K∈Gaussianρ  and again 

for }9.0,,2.0,1.0{ K∈ugGaussianSlρ . 

In the case of US equity, let�s now consider the "NYSE Index"/"Coca Cola" pair in particular 

(Figure 7). Right away, the (i) independent copula (uniform expected frequency matrix) is emphatically 

rejected, as its chi-square test statistics is extremely high, at 105.9. The (ii) Gaussian copula, with only an 

exception when 9.0=Gaussianρ , yields much better results, and at }5.0,4.0,3.0{∈Gaussianρ cannot be 

rejected (at 99% confidence). The (iii) Gaussian Slug copula, contrary to what we had hoped, does not 

improve over the standard Gaussian copula, with an only redeeming fact being at 2.0=ugGaussianSlρ  it 

cannot be rejected (at 99% confidence) either. 

In the case of Thai equity, let�s now consider the "SET Index"/"Siam Cement " pair in particular 

(Figure 8). Right away, the (i) independent copula (uniform expected frequency matrix) is emphatically 

rejected, as its chi-square test statistics is extremely high, at 307. The (ii) Gaussian copula, with no 

exception, yields much better results, and at }8.0,7.0,6.0{∈Gaussianρ  cannot be rejected (at 99% 

confidence). The (iii) Gaussian Slug copula, contrary to what we had hoped, does not improve over the 

standard Gaussian copula, and in fact is rejected for all values of }9.0,,2.0,1.0{ K∈ugGaussianSlρ  tried. 

                                                        
13
 Again, should we wish to capture/test for a Grun-awayH effect, the roles would be effectively reversed, 

i.e. the x-data would instead represent some kind of individual-stock returns, while the y-data would 

instead represent some kind of market/index returns. 
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In fact, similar results were observed with a number of other pair returns, prompting us to 

preliminarily concede that the case for enhancing the standard Gaussian copula models in finance with the 

kind of nonlinearity we envisioned is yet unproven. Nonetheless, we believe the test devised and used in 

this paper, while negating our contribution in terms of adding realism to copula modelling, is appropriate 

for testing the goodness-of-fit of any copula model and provides a transparent benchmark by which to 

evaluate any candidate copulas against established ones. 

 "NYSE Index" & "Coca Cola" Returns - Chi-Square Test Statistics for Different Copulas
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Figure 7: "NYSE Index" vs. "Coca Cola" Returns L Chi-Square Test Statistics for Different Copulas 

"SET Index" & "Siam Cement" Returns - Chi-Square Test Statistics for Different Copulas
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Figure 8: "SET Index" vs. "Siam Cement" Returns L Chi-Square Test Statistics for Different Copulas 
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Detailed results of our experiments is given in Table 5 
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1 NYSE-ATT 0.51 157.3 (0%) 0.49 29.9 (1.83%)� 0.3 42.8 (0.03%) 

2 NYSE-CocaCola 0.45 105.9 (0%) 0.41 21.4 (16.49%)� 0.22 28 (3.18%)� 

3 NYSE-ExxonMobil 0.63 180.5 (0%) 0.55 19.7 (23.39%)� 0.38 34.4 (0.49%) 

4 NYSE-GE 0.68 254.4 (0%) 0.62 28.8 (2.5%)� 0.51 41.6 (0.05%) 

5 NYSE-IBM 0.59 246.5 (0%) 0.59 44 (0.02%) 0.43 72.9 (0%) 

6 NYSE-Merck 0.43 122.5 (0%) 0.4 39.7 (0.09%) 0.22 42.5 (0.03%) 

7 NYSE-Microsoft 0.49 163.7 (0%) 0.48 37.4 (0.19%) 0.29 49.7 (0%) 

8 NYSE-WalMart 0.52 155.9 (0%) 0.52 16.1 (44.78%)� 0.33 32 (1.01%)� 

9 SET-BangkokBank 0.79 394.4 (0%) 0.77 15.4 (49.69%)� 0.74 57.5 (0%) 

10 SET-SiamCement 0.70 307 (0%) 0.72 10.5 (83.66%)� 0.65 42.8 (0.03%) 

Table 5: Chi-Square statistics, � indicates that the copula cannot be rejected at 99% confidence level. 

6. Concluding remarks 

We set out to construct, without introducing additional fit parameters, nonlinear dependency 

structure, while keeping as close as possible to the widely popular normal distribution and Gaussian 

copula functions. Our %Gaussian Slug� distribution appears functionally similar to the normal distribution, 

and retains the location-scale invariant property, yet manages to transform the linear expression of the 

conditional expectation into one that expresses a nonlinear, diminishing sensitivity response. Although 

this is initially motivated by stylised observation that, especially in emerging market equities, individual 

%core� stocks tend to react sharply to general market/index initially, but retain value better as the market 

slumps, conversely get capped by profit taking when the overall market rallies, preliminary evidences 

from weekly US and Thai equity data do not support our position. Notwithstanding, the parametric search 

and goodness-of-fit methodologies devised and demonstrated in this paper are simple, intuitive, and 

transparent. Put in another way, of the four areas we attempted to innovate (distribution, copula, 

estimation, and testing), the latter two remain useful despite the former two having yet to prove their 

worth. 
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