

การจัดประชุมทางวิชาการ "*ศาสตราจารย์สังเวียน อินทรวิชัย* ด้านตลาดการเงินไทย" ครั้งที่ 18 ประจำปี 2553

การบรรยายเรื่อง "เทคนิคทางเศรษฐมิติ AR Process เพื่อการพยากรณ์ อัตราดอกเบี้ยในตลาดการเงินไทย"

ผู้บรรยาย ผู้ช่วยศาสตราจารย์ ดร.สุลักษมณ์ ภัทรธรรมมาศ

วันอังการที่ 16 พฤศจิกายน 2553 เวลา 13:15 – 14:45 น. ห้อง 206 คณะพาณิชยศาสตร์และการบัญชี มหาวิทยาลัยธรรมศาสตร์ ท่าพระจันทร์

""เทคนิคทางเศรษฐมิติ AR Process เพื่อการ พยากรณ์อัตราดอกเบี้ยในตลาดการเงินไทย"

ผศ.ดร.สุลักษมณ์ ภัทรธรรมมาศ กาควิชาการเงิน คณะพาณิชศาสตร์และการบัญชื่ มหาวิทยาลัยธรรมศาสตร์

Topics

- AR Process
- Data
- Estimation Results
- Forecasts
- Limitations
- Extension
- References

Asst.Prof.Dr.Suluck Pattarathammas

AR (Autoregressive) Process

- ARMA (p,q) model
- Autoregressive Moving-Average Model

$$r_{t} = a_{0} + \sum_{i=1}^{p} a_{i} r_{t-i} + \sum_{i=0}^{q} \beta_{i} \varepsilon_{t-i}$$

• If q = 0, the process is called AR (p) model.

$$r_{t} = a_{0} + \sum_{i=1}^{p} a_{i} r_{t-i} + \varepsilon_{t}$$

 The simple concept is that part returns can explain current returns (not random walk).

Asst.Prof.Dr.Suluck Pattarathammas

_

AR Process- Model Selection Criteria

- ▶ How well does it fit the data?
- Adding additional lags for p will reduce the sum of squares of the estimated residuals.

$$\sum_{i=1}^{T} \varepsilon_i^2$$

 However, adding such lags will entails the estimation of additional coefficients and associated loss of degree of freedom.

Asst.Prof.Dr.Suluck Pattarathamma

AR Process- Model Selection Criteria

- The 2 most commonly used model selection criteria are
 - Akaike Information Criterion (AIC)
 - AIC = TIn(sum of squared residuals) + 2n
 - T = number of usable observations
 - n = number of parameters estimated (p + constant term)
 - Schewartz Bayesian Criterian (SBC)
 - SBC = $T \ln(\text{sum of squared residuals}) + n \ln(7)$
- Select the model with the smallest values of AIC and SBC.

Asst.Prof.Dr.Suluck Pattarathammas

5

AR Process-Estimation Process

For simplicity, we assume the residuals (error terms) is normally distributed with mean zero and a constant variance.

$$\varepsilon \square N(0,\sigma^2)$$

- ▶ The AR (p) model can then be estimated with regression method.
 - Using Excel
 - Using Econometrics Software, such as Eviews

Asst.Prof.Dr.Suluck Pattarathamma

Data

- ▶ 6M THBFIX is the underlying asset of 6M THBFIX Futures
- Daily data
- In Sample Data: April 16, 2001-June 30, 2010
 - · Full Sample
 - · Latest 250 observations
- Out-of-Sample Data: July 1, 2010-July 30,2010

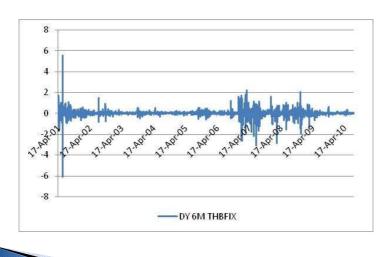
Asst.Prof.Dr.Suluck Pattarathammas

7

Data: Figure 1 6M THBFIX 16.00 11.00 12.00 10.00 8.00 6.00 4.000 2.00 -6M THBFIX Asst. Prof. Dr. Suluck Pattarathammas

Data: Variables

For interest rates, we normally measure the changes in interest rates.


$$\Delta y_t = y_t - y_{t-1}$$

▶ The AR(p) model becomes

$$\Delta y_t = a_0 + \sum_{i=1}^p a_i \Delta y_{t-i} + \varepsilon_t$$

Asst.Prof.Dr.Suluck Pattarathamma

Data: Figure 2

sst.Prof.Dr.Suluck Pattarathammas

Estimation Results: AIC and SBC

Full Data			250 Data		
Lag p	AIC	SBC	Lag p	AIC	SBC
1	0.7544	0.7593	1	-2.0728	-2.0447
2	0.7530	0.7603	2	-2.1091	-2.0668
3	0.7485	0.7581	3	-2.1014	-2.0450
4	0.7415	0.7535	4	-2.0941	-2.0236
5	0.7371	0.7516	5	-2.0862	-2.0017
6	0.7363	0.7532	6	-2.0784	-1.9798

Asst.Prof.Dr.Suluck Pattarathamma

uluck Pattarathammas

Estimation Results: Estimated Parameters

Full	Data	250 Data					
Estimated Coefficients							
a0	-0.0039	a0	-0.0033				
a1	-0.1170	a1	0.1129				
a2	-0.0239	a2	-0.2079				
a3	-0.0044						
a4	-0.0396						
a5	-0.0376						

sst.Prof.Dr.Suluck Pattarathammas

Forecasts-one period

• With the estimated coefficients, we can forecast Δy_{t+1} conditioned on the information available at period t as

$$E_t \Delta y_{t+1} = a_0 + \sum_{i=1}^p a_i \Delta y_{t-i+1}$$

Asst.Prof.Dr.Suluck Pattarathammas

40

Forecasts-multi-period

For simplicity, consider the forecasts from the AR(1) model. $E_t \Delta y_{t+1} = a_0 + a_t \Delta y_t$

$$E_t \Delta y_{t+2} = a_0 + a_1 E_t \Delta y_{t+1} = a_0 + a_1 (a_0 + a_1 \Delta y_t)$$

$$E_t \Delta y_{t+j} = a_0 \left(1 + a_1 + a_1^2 + \dots + a_1^{j-1} \right) + a_1^j \Delta y_t$$

The last equation is called the forecast function, expresses all of the j-step-ahead forecasts as a function of the information set in period t.

Asst.Prof.Dr.Suluck Pattarathamma

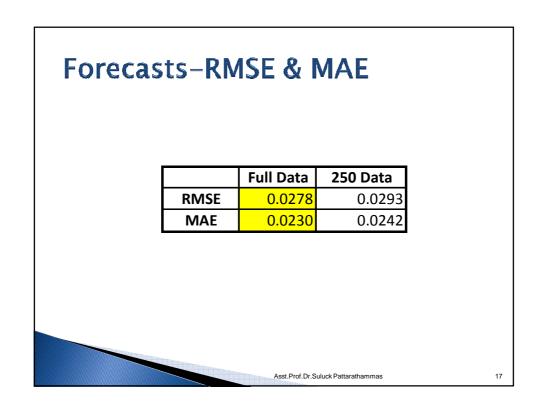
Forecasts-multi-period

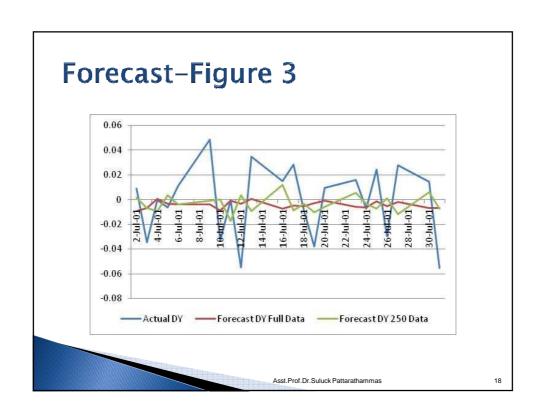
- Unfortunately, the quality of the forecasts declines as we forecast further out into the future.
- So, in my example, I will update the actual change every day and will do only one-stepahead forecasts.

Asst.Prof.Dr.Suluck Pattarathammas

15

Forecasts: Comparison with other models


RMSE (Root Mean Squared Error)


$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} \varepsilon_{t}^{2}}$$

MAE (Mean Absolute Error)

$$MAE = \frac{1}{n} \sum_{t=1}^{n} \left| \varepsilon_{t} \right|$$

Asst.Prof.Dr.Suluck Pattarathamma

Limitations of the Basic AR (p) models

- Only past changes in interest rates explain the current changes in interest rates.
 - Other factors are excluded.
- All estimated coefficients are assumed to be constant.
 - Time varying coefficients
 - Sensitive to the period of selected data
- Variances is assumed to be constant.
 - Time varying variance
- Residuals are assumed to be normally distributed
 - Use other distribution

Asst.Prof.Dr.Suluck Pattarathammas

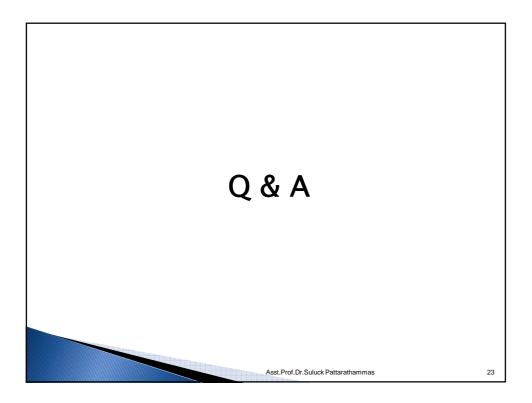
10

Extensions

- Combine with other factors
 - ARMA (p,q) models
 - VAR models
 - Include other variables
- Time varying coefficients
 - Select different samples for testing
 - Use dummy variables
 - Use Markov-Switching models
- Time varying variances
 - Use GARCH type models
 - Markov-Switching model with state variance

Asst.Prof.Dr.Suluck Pattarathammas

Extensions


- Other distributions
 - Student-t distribution

Asst.Prof.Dr.Suluck Pattarathammas

References

▶ Enders, W.,2004, Applied Econometric Time Series, Wiley: USA, 2nd Edition.

sst.Prof.Dr.Suluck Pattarathammas

