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ABSTRACT

Certain approaches can be applied to estimate real yields on a daily basis for
Thailand’s bond market. The estimation is complicated, data-intensive and time-consuming;
hence it is not very useful to practitioners. This study proposes a simple and practical
approach which practitioners can actually use. Simplicity and practicality result from the use
of readily available, lagged nominal yields for projection variables and from the choice of
less computationally-intensive, qualified but less efficient diagonal matrix for minimum chi-
square estimation. Using daily nominal yield data of up to 15-year maturity from July 30,
2013 to Ausust 8, 2014—250 observations as are commonly chosen by practitioners,
together with scaled average headline inflation, the study finds a normal shape for the
average daily real curve. To demonstrate simplicity and practicality, the parameter
estimation is performed in Microsoft Excel spreadsheets. The estimation is successful and

fast.
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A Simple Approach for Practitioners
to Estimate Daily Real Yields in Thailand’s Bond Market

1. Introduction

Certain approaches can be applied to estimate daily real yields for Thailand’s bond
market. For example, in a conventional way one may assume a multifactor interest model
such as Joyce et al. (2010) that describes both nominal and real yields and then estimate it
by Kalman filtering using daily nominal yield data and scaled average daily inflation data.
Recently, Khanthavit (2014a, b, c) proposed a linear projection approach that can estimate
real yields on a daily basis from daily nominal yields and monthly inflation data. Although
the estimation of daily real yields by these approaches is possible, it is not very useful to
practitioners. The Kalman filtering approach is complicated and numerically challenging,
while the less complicated and less numerically challenging approaches of Khanthavit
(2014a, b, c) need projection variables which are not readily available to practitioners.

In this study, | propose a simple approach to estimate daily real yields for Thailand’s
bond market. It extends the Khanthavit’s (2014a, b, c) studies by considering lagged nominal
yields as being projection variables. This simplifies the model estimation substantially
because lagged nominal yields are readily available to practitioners. The estimation is less
data demanding and intensive. Moreover, with respect to Hamilton and Wu’s (2012)
analysis, because in a latent multifactor interest model nominal yields are determined by
latent factors, the latent factors can be inferred from the projection nominal yields. Based
on this functional relationship, | am able to relate the model parameters with the regression
coefficients of nominal yields on projection lagged nominal yields. It turns out that the
number of parameters to be estimated reduces from that in Khanthavit (20143, b, c) by the
number of latent factors times the number of projection variables. The resulting empirical
model is much less complicated.

| estimate the model parameters by minimum chi-square estimation. Rothenberg
(1973) suggests an efficient weighting matrix be used so that the resulting estimates are
efficient. In this study the efficient weighting matrix is the inverse of autocorrelation
consistent covariance matrix of the regression coefficients. But using the efficient weighting
matrix introduces two practical problems. Firstly, the study considers a large number of

nominal yields in the estimation. So, the system of regression equations is large and it is



difficult to compute the autocorrelation consistent covariance matrix. Secondly, the number
of regression coefficients is large. Even if the autocorrelation consistent covariance matrix is
available, the minimization of the chi-square objective function is numerically challenging.
The minimization problem is highly non-linear and it involves the inversion of a large
covariance matrix.

Rothenberg (1973) explains that in minimum chi-square estimation any positive-
semidefinite weighting matrix can give unbiased and consistent estimators. Matrix efficiency
enhances the estimators by making them efficient.

Being aware that practitioners weigh more for practicality, | propose to use a diagonal
weighting matrix whose diagonal elements are the inverses of consistent variances of the
regression coefficients. Although it is less efficient, the matrix is positive semidefinite and is
therefore qualified. The variances can be estimated from single-regression equations of their
corresponding yields, rather than from a system of regression equations. The chi-square
minimization problem can avoid large matrix inversion and reduce to a sum-of-squared-
scaled-error problem.

| demonstrate simplicity and practicality of the proposed approach by estimating the
model parameters and inferring real yields in Microsoft Excel spreadsheets. The estimation is
fast, in which the solution can be obtained within less than 5 minutes.' Using daily nominal
yield data of up to 15-year maturity from July 30, 2013 to August 8, 2014—250 observations
as are commonly chosen by practitioners, together with scaled average headline inflation,

the study finds a normal shape for the average daily real term structure.

2. The Model

| adopt Joyce et al. (2010) to describe nominal and real yields in Thailand. The
model is an essentially affine term structure model which relates the nominal and real
yields with a set of latent factors linearly under a no-arbitrage condition in the real world. It
is flexible for it allows time-varying risk premiums and real short rate. The number of latent
factors can be raised to capture complex behavior of the yields. Moreover, a latent factor

model is found in previous studies to fit yields better than a macro factor model.

" The computation time depends on starting values and computer speed. Readers may obtain the Excel spreadsheets from

the author upon request.



2.1 The Pricing of Real and Nominal Bonds

In a no-arbitrage environment, the time-t price Ptn’R of a zero-coupon real bond with
an n-period maturity must be given by (Cochrane (2005))
nR __
P = E{M41Mey2 . Mggn}, (1)
where Mt_,_]- is the real pricing kernel in j periods hence and E{. } is the conditional

expectation operator in the real world. The price Ptn’N of a zero-coupon nominal bond is

Teyi—
given in a similar way but with the nominal pricing kernel M:ﬂ- = Mt+j % being
t+

substituted for M. Iy is the consumer price index at time t+].

PPN = E{M{y1 Miys . Miyn ) 2)

2.2 Real Yields and Nominal Yields
From egs. (1) and (2), because the real yield y?’R and nominal yield y?'N are

1 1
— ;Ln{Ptn’R} and — HLn{Ptn’N}, up to a second order approximation the yields must

equal
y{l'R = - % {Et(Zjnzl mt+j) + %Vt(z?ﬂ mt+i)} (3.1)
PN = =B (e = 1)) + V(S (e = ). 02

Teaie
where Myyj = Ln{Myy;}. ey = Ln{ t;” :

} is log inflation. Vt(.) is the variance
t+

operator conditioned on the information at time t.

2.3 Stochastic Behavior of Pricing Kernels

The logged, real pricing kernel My takes on the form as in eq. (4).
ALQA¢

1
me, = —(F+yTz) — — AQ2gyy (4)

The term (T + Y'Z) is the real short rate. It can vary over time with a set of K latent

factors Z{ = [Zl,t: v ZK,t]- The real short rate is constant if y' = [Yl, ’YK] is a zero
1
vector. Vector A L)z is time-varying risk premiums.

Bll BlK

B Pk

K is constant if vector [Byq, -, Bkk] is zero. €141 = [81_t+1, . 8K,t+1] are Gaussian

Vector A’ = [A4, ..., Ak] and matrix B = . The risk premium for factor



shocks of factors Z.1. Their mean vector is zero and their covariance matrix is {) =

o 0.. 0
0 : .
) ol Factors Z,q follow a VAR(1) process in eq. (6).
2
0 ..0 ok
Ziy1 = QZ t Eqq. 6)
P11 0.. 0
0.. :
Coefficient matrix (p = (P:21 (Pzz.' 0 is a lower triangular matrix.

Px1 Pz -+  @kx

Because the logged nominal pricing kernel My, q is My4q — T4 q, from eq. (4) it

must equal
ALQA,
2

1
miy, = —([F+v'z) — — At Q2€ 1 — Ty (7)
2.4 The Pricing
Following Duffie and Kan (1996), Joyce et al. (2010) derived the solutions for the real
and nominal yields as affine functions of latent factors in egs. (8) and (9).
1
ye© = ——{Ay + Bz} (8)
1 * *

i = —~{A; + Bz, ©)
where Ay = Ap = 0.00 and By = By are (Kx1) zero vectors. Coefficients Ay and
Af > and vectors Bysg and By are determined sequentially with respect to the
systems of equations (10).

— 1

An = —-Tr+ Al’l—l - BI,]_]_QA + EB;I—].QBD—l (101)

B, =-y +B,_.(@—QB) (10.2)
and

* - * * * 1 * * 2

AL = =T — g + Ay — BYOA" + 5B OB)_y + 5+ ofhy (1039

By = —(v' + ¢1) + By, (¢ — Q) + VOB, (10.4)
where @1 = [@17 0... O,V =[1 0.. 0]landA* = A+ L pyisthe
unconditional mean of the inflation. The specifications (10.3) and (10.4) are specific to the
perfect correlation assumption of factor Z; ¢ with inflation Tty. Modification needs be made

under a different assumption for Tt;.



3. Model Estimation
3.1 Measurement Equations
Because factors Z; are latent, the econometrician will have to relate them with

observed variables. From eq. (9), the measurement equations for day t are given by

1 1 '
n ;N I A* I B"<
Ve n, M n; M wr.ll't
= : + : z.+| ¢ (11)
HH,N 1 ny,N 1 Y w
Ye —— Y i - BnH Dt
ny ny

y.?h’N is the daily nominal yield with an ny-day maturity. With respect to Piazzesi (2010), a
month of 21 trading days is assumed. So, N, is 21h and 252h days for h-month and h-year
maturities respectively. Wy, t is the measurement error due to, for example, bid-ask spreads

and zero-curve interpolation.

3.2 A Linear Projection of Latent Variables
Khanthavit (20143, b, ) propose a linear projection approach to estimate the model

on a daily basis even though inflation is reported monthly. Latent factors Z; can be

projected linearly by a set of 1 observed projection variable q; = [q()’t =
1, Ay oo qn—l,t]‘ The projection equation is given by
z. = b'q; + v;, (12)
b10,b1, -, b1,n—1
where b’ = : is the matrix of projection coefficients and vy =
bK,O: bK,lJ ) bK,‘r]—l
[Vl,t: ) VK,t] are projection errors. The linear projection approach follows Mishkin (1981)
who estimated unobserved real yields by information variables. When b’ q; + V; is

substituted for Z; in eq. (11), eq. (13) is obtained.
n1,N

Y
2 = o(Tqt + u,, (13)
nH,N

Y
where the & matrix has non-linear functional relationships with the model’s parameter
vector [T, T, Ay, «, Ak B11s B12s +vo» BKK @11 -+ @11, O3, -, O] and the projection

1 */
wnl,t - n_1 Bnlvt
coefficient vector [b1,0» by 1, ., bK,n—l]’~ u; =
1 x/
Wyt - B



The projection variables in Khanthavit’s (2014a, b, ) studies are a constant and four
1-day lagged Bjork-Christensen (1999) beta shape factors. | am aware that the beta shape
factors are not readily available to practitioners. Hence this choice for projection variables is
not very practical. | propose 1-day lagged nominal yields as the alternative. Practitioners
already have nominal yields and hence their lags. Moreover, as | will show below
considering lagged nominal yields as projection variables can reduce the number of
parameters to be estimated substantially from that of Khanthavit (2014a, b, c) so that the
resulting empirical model is less complicated and less computationally intensive.

To proceed, | separate the H nominal yields being considered in the analysis into

11,N
two groups. Group one contains K < H nominal yields Y [ ‘ whose 1-day lags
1K N
1
11,N
will serve as the projection variables. The projection variables are ¢ = t?l . Group two
1K,N
. Yi-1
N Yt N
is the remainders Ytz' = : . From eq. (11), Z; is related with Ytl'
2(H-K),N
t
x—1 ) * *
Zt - Bl (Yth - c/ql) - Bl 1w1‘t (141)
so that
x—1 1,N * x—1
Z1 =B (Yt—1 - C’q1) —B] Wi, (14.2)
1 */ 1 *
nlylB ’ ] [ nlylA ’ ] wllt
where for brevity B] = | and Aj = | : LW =
- - w1Kt
l n1 K B J l n1 K A1 KJ
substituting and rearranging terms in egs. (6), (13) and (14), the regression equations of Ytl’N
1
y11 N
on ¢ = =1 1 can be written as in eq. (15),
1K N
Yt ! 1 1\yv1,N
= (A1 — BioB] A7) + (BioB] )Y
+(BI£t + wl’t - BI(prt_l), (15)

and those of Ytz’N on ¢ can be written as in eq. (16),

= (A3 — B30Bi AL + (B9B )Yy



+(B§£t + Wy — Bscpwl,t_l), (16)

1

_1gw Y

[ N1 B2,1 [ N2 21
where B = [ ) : Jand A, = : LWy =
* 1
———— B ! B _ *
nymoy  2HK) N2 (H-K) AZ,(H—K)
W21t
W2(H-K),t

It is important to note that the parameters of the empirical model in egs. (15) and
(16) reduce to only [W, T Agy vers Ak B11s - s BKK @11 -+ » @KK> 025 -, O] - The
projection coefficients need not be estimated.

Although egs. (15) and (16) and those in Hamilton and Wu (2012) look similar, their
derivations, properties and implications differ in two important ways. Firstly, Hamilton and
Wu (2012) relate Ytl’N with Ytl;l\i by the theoretical relationship in eq. (9), while | do by the
empirical relationship in eq. (11). Secondly, Hamilton and Wu (2012) relate Ytz'N with Ytl’N,
while | relate YtZ’N with Ytl_’l\ll. Our different ways of relating variables lead us to consider
different econometric techniques to estimate the regression coefficients and their
covariances. In this study, from egs. (15) and (16) because Ytlll\i is endogenous and the
regression errors are autocorrelated, | will have to use instrumental variable (IV) regressions
as opposed to simple least squared regressions in Hamilton and Wu (2012). The application

of IV regressions will be discussed below.

3.3 Identification of Interesting Parameters
3.3.1 The Parameter for Inflation

Similar to Hamilton and Yu (2012), Khanthavit (2014b, c) acknowledge that all the
model parameters need not be estimated jointly but sequentially in steps. The expectation
Ky for daily inflation can be inferred from monthly inflation data in step one. Once Wy is
obtained, it can be employed together with daily nominal yield data to identify the

remaining parameters in step two.

3.3.2 The Remaining Parameters
At this point, the remaining parameters that must be estimated are @ = [T, A4, -+,

Ak> B11s s BRI @115 -+ » PKK> O2, - %] One way to proceed in the second step is



to follow Khanthavit (2014b) to estimate them by nonlinear SURE using daily nominal yield
curves and the W estimate from the first step. But as Hamilton and Wu (2012) and
Khanthavit (2014c) pointed out, the estimation is a numerical challenge because the
objective surfaces are highly nonlinear and they behave badly. In order to lessen the
computation time, | will follow Khanthavit (2014c) to apply Rothenberg’s (1973) minimum-
chi-square estimation for the problem.

Consider the following system of linear regression equations of daily nominal yields

on the projection variables.

[Cn 0] 1T C11,10 > C11K 1
1N 1,N
Yo C1K,0 N C1K,1» -+ » C1K K viN 4 W; an
2N| ™ C C ., C t—-1 2,N|’
Y; 21,0 21,1 21K W,
LLC2(H-K),01]  LLC2(H-K),1/ ---» C2(H-K) K]
T [C11,0] 7 i C11,15 = C11K 1
C1k,0 , , C1K,1, --» C1IKK _
where C is the vector of intercepts and C C is the
21,0 21,1, - €21 K
LLC2(H-K),01] L [C2(H-K),1> > C2(H-K),K 1]

1,N
matrix of slope coefficients. [ t ] is the vector of regression errors.

[Cn 0]

C1K 0

Define C = Vech as the vector of regression
C21,1» = C21K

C2(H-K),1» =+ C2(H-K),K
A~ BioB; A
coefficients and R is the covariance matrix of C. g(0) = Vech :
B B*_l
2PDq
is the vector of functions g(0) of the remaining parameters © that describe the shape of
nominal curves. Rothenberg (1973) shows that the remaining parameters can be estimated

by minimizing the chi-square statistic XZ in eq. (18) with respect to ©.
x* = t[C—g(®)]'RT[C —g(B)]. (18)

10



where T is the number of observations. The minimizers © have the property ﬁ(@ —
-1
ag(e))' -1 (ag(ﬁ))]
0) - Normal <O, [( Y R Y, :

3.4 The Econometrics
3.4.1 The Regression Coefficients

The study must estimate the coefficient vector C and its covariance matrix R from

daily [ tZNI and Ytl;l\i data. Because the regressors Ytl_'l\i are endogenous, conventional

OLS regressions will give biased and inconsistent C. To obtain unbiased and consistent C, |
choose IV regression estimation. In general, it is difficult to find Vs that are highly correlated
with the regressors and orthogonal to the regression errors. In this study, | consider 2-day
lagged Ytl_’lg as being the IVs. | have two reasons. Firstly, previous studies such as Khanthavit
(2013) reported that nominal yields were strongly autocorrelated. So, the regressors Ytlﬂ
and the IVs Ytl;lg must have strong correlations. Secondly, from egs. (11), (15) and (16), the
IVs Ytl_’lg are orthogonal to the regression errors (BISt + Wi — Bf(pwl't_l) and
(Bree + @ — By 1),

Y1,N]

The system of IV regression equations can be large when the study considers [Ytz N

t
of various tenors. So for a practical purpose | will estimate the regression coefficients

Cli=(10r 2)}{i=1)},0
Chiy = : for each {j, i} tenor separately by a single-IV-
C{j=(1 or 2){i=(K or (H-K)},K
regression equation. Because the regressors are the same across regression equations, the

resulting C from single-IV-regression equations is the same as the one from the system of IV

regression equations. The IV estimator Cg]i} for Cgj iy s

Cylyy = [[1 Y1 YlN] ] [[1 Yl’N]’Y{j’i}'N] (19)
where 1is a (T X 1) vector of ’s, Y 1 is a (T X K) matrix of 1-day lagged Yt 1 Y12N is

a (T X K) matrix of 2-day lagged Ytiz and YUNis 5 (T % 1) vector of the nominal yield
of {j, 1} tenor.

11



3.4.2 The Covariances of Regression Coefficients

The covariance matrix of Cg,/i} can be estimated by a consistent estimator Zgl,i} in
eq. (20).

iy =[ln VTl v v e

a7
x[1 Y*N] [[[1 Y[ vEN 1] , (20)
where Z{j,i} is the (‘E X T) covariance matrix of the regression errors for tenor {], i}. To
estimate X ), turn first to tenor {j = 2,i}. From eq. (16) because the errors are
homoskedastic and uncorrelated, Z{j:z,i} is 6{21-:2,1} X I, where G?j:z,i} can be estimated
conveniently by the variance of the IV regression errors for tenor {j = 2, i}.

Turn next to tenor {] =1, i}. From eq. (15) it is important to note that the errors are
autocorrelated of order 1. This fact constitutes Z{j=1,i}’ whose elements have the following
properties. The diagonal elements are the same and equal to O‘%]-=1,i}——the variance of the
errors. The off-diagonal elements (S,s — 1) and (s — 1, s) are the same and equal to
G{j=1,i}(5: s — 1)—the first-order autocovariance of the regression errors. The remaining
elements are identically zero. It is not difficult to estimate the variance G{2j=1,i} and
autocovariance Ofj=1 i} (s,s — 1) statistics. From the IV regression, once the

econometrician obtains the regression errors, the estimates are the errors’ variance and

autocovariance.

3.5 Practicality Problems
3.5.1 A Practical Weighting Matrix

The regression coefficients € and their covariance matrix R are needed for estimating
the parameters @ by minimum chi-square estimation in eq. (18). Despite the fact that the
covariance matrices Z%]V’i}’s are obtained for all Cg’i}’s in C, these matrices are not sufficient
to construct R because the covariances among Cg’/i}’s are not available.

It is difficult—especially for practitioners, to estimate R when regression errors are
autocorrelated and the system of IV regression equations is large because the estimation
involves extremely large matrices of stacked nominal yields, regressors and Vs and the
autocorrelation-consistent covariance matrix of stacked regression errors. To proceed, | recall
that in minimum chi-square estimation the weighting matrix needs not be R~ Any positive
semidefinite matrix can give unbiased and consistent estimates for @. The choice for

efficient R is to enhance efficiency of the estimation.

12



If the approach is not practical, it is not useful to practitioners. So, | sacrifice the use
efficient R for the use of a practical, qualified but less efficient, positive-semidefinite matrix.
In this study, | propose a diagonal matrix R whose diagonal elements are the consistent
variances of C. These variances can be obtained from the diagonal elements of Za}i}’s.

It is interesting to ask how important it is to discard the off-diagonal elements of
matrix R when it is substituted for by matrix . Because the diagonal elements of matrices
R and R are the same, matrix R offers the same degree of efficiency if the regression
coefficients C are uncorrelated. However, in reality the regression coefficients C are hardly
uncorrelated. To analyze the question in a more realistic case, let us consider the chi-square
objective function in eq. (18). This structure compares well with a non-linear least-square
regression in which the regression errors are heteroskedastic and autocorrelated. So,
substituting R for R can be thought of as considering only the errors’ heteroskedasticity but
ignoring autocorrelation in the non-linear regression analysis. In the literature, for some
reasons heteroskedasticity or autocorrelation is at times ignored even though it probably
affects reliability of the estimates. See, for example, Hamel et al. (2012). Here, the effects
should not be so severe because the approach maintains unbiasedness and consistence

properties of the estimates.

3.5.2 Further Improvements
C11 0
The contribution of to the chi-square objective function is to compare it
C1K 0
|41 —Bi9By c’q1
with * * x—1 g%
A; —By¢B; ~ A

the pricing formula in eq. (9) and the zero expected Z¢ in eq. (6). If | substitute demeaned

]. This results from the fact that the regressors are Ytl_’l\ll. Recall

C11,0
Y1 N 4 for Y 1 in the regression egq. (17), the contribution of : to the chi-square
[C1K,0

*

A

* _
objective function is to compare it with 1] Because the ] functions are much less

%
* * x—1 *
1~ Bi@B; A
* * x—1 *

A; — BBy A

C11,0
demeaned Ytl_’l\lI and compare t | with
CiK,0

complicated than the [ ] functions, in the analysis | will use the

qu] instead.

13



C21,10 = C21K
The contribution of Vech : to the objective function
C2(H-K),1» = C2(H-K),K
Bi¢B;
B¢B;

operational problems because BI_l needs be compute in each step of the gradient search

is to compare it with Vech ( ) The comparison most likely suffers from

in the minimization. If B] is singular, the inversion fails and the search stops. To avoid the

failure of By inversion, | multiply the slope coefficients in C and in g(e) on the right by

[C21,1; Ty CZl,K]Bik
B; to obtain Vech : and Vech(
[CZ(H—K),lt T CZ(H—K),K]BI
is not required any longer in the analysis.

BICP) o—1
. ] sothat B
B¢ !

[C21,1r ) (321,K]B>1k
It is important to note that when Vech : and
lc2-K)10 - Cori—0.x | Bi
*

Vech <£%$> are considered, their corresponding elements of matrix R should be
adjusted accordingly.

To adjust the corresponding diagonal elements of matrix R, suppose the diagonal
matrix Diag([.’Rji'l, e :Rji,K],) for [Cji,lr s Cji,K] is considered. When [Cji,l: . Cji,K]
is adjusted by Bj, the diagonal matrix should be modified to Dji =
BI’Diag([R]-i,l, ;Rji,K],)BI- In order to maintain practicality of the analysis and the

diagonal matrix nature of R, | propose to substitute the diagonal elements of D]-i for

[Riis, 0 Ryi]

3.6 Parameter Restrictions

The estimation can be improved one step further by standardizing and constraining
certain parameters. The standardization helps to reduce the number of parameters to be
estimated and the constraints help to limit the areas for parameter search. | follow Hamilton
and Wu (2012) to standardize the volatilities of latent factors such that 0y = -+ = Ok. But
instead of setting them equal to 1.00, | set them equal to 0.0001 which is in the same
magnitude as the ones found for Thailand by Khanthavit (2014a, b, c). Next | follow Dai and
Singleton (2000) to constrain Y' = [y, ..., Yk] to be non-negative.

14



3.7 Microsoft Excel Spreadsheets

The strengths of the proposed approach are simplicity and practicality for
practitioners. To demonstrate these strengths, | will estimate the model parameters and
infer daily real yields in Microsoft Excel spreadsheets. Microsoft Excel is available to most
practitioners. It offers basic statistical and mathematical functions and its calculation engine
is not very fast. If the approach can work in Excel spreadsheets and the computation is
reasonably fast, it is hoped practitioners will find it useful and apply the approach in their

daily works.

4. The Data
4.1 Samples and Sources

The study applies the minimum-chi-square technique to estimate daily real yields of
up to 15-year maturity in Thailand’s bond market. The nominal zero-coupon yield data
begin July 30, 2013 and end Ausgust 8, 2014. They are constructed by the Thai Bond Market
Association. The sample period provides 250 daily observations. | choose this particular
sample size because it is the size commonly chosen by practitioners and is accepted by
regulators such as the Bank of Thailand (2003) as being a sufficiently large sample size for
daily observations. The inflation is the log monthly inflation, computed using the headline
consumer price index from the Bureau of Trade and Economic Indices, Ministry of
Commerce. The consumer price index data begin May 2000 and end July 2014. The
expected daily inflation is set to monthly average inflation divided by 21.

Table 1 reports the descriptive statistics of nominal yields and inflation. The average
inflation is 2.6300% when it is scaled to annual rate. This level is within the 0.00-to-3.5
percent band being monitored by the Bank of Thailand under its inflation targeting policy.
The average term structure of nominal yields has a normal shape, while its volatility
structure has a “U” shape. This finding is similar to what Khanthavit (2014c) reported earlier.
However, it is important to note that, due to our different sample periods and sizes, the
average levels in my study are about 20 basis points lower for short yields and about 60

basis points lower for long yields than the ones in that study.
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Table 1

Descriptive Statistics

Variables Average Max Min Std. Skew. E. Kurt. JB St. AR(1)
Inflation 2.6300 25.8264 -36.7878 6.3601 -1.2921 10.1489 | 729.5896%** 0.3258
M 2.2456 25316 1.9988 0.2064 0.1669 -1.6176 28.4160*** 0.9963
3M 22714 2.5694 2.0145 0.2113 0.2045 -1.6062 28.6149%** 0.9967
6M 2.3052 26182 2.0530 0.2183 0.2584 -1.5869 29.0165%** 0.9964
1Y 2.3286 2.6291 2.0750 0.2113 0.2854 -1.5584 28.6925%** 0.9962
2Y 25724 3.1071 22277 0.2726 0.3849 -1.3539 25.2668%** 0.9951
3Y 2.8422 3.3432 2.3857 0.2907 0.1085 -1.4758 23.1790*** 0.9958
ay 3.2001 3.6814 2.8956 0.1934 0.4855 -0.7005 14.9346%** 0.9841
5Y 3.4229 3.8172 2.9882 0.2245 -0.0748 -1.2440 16.3531%** 0.9972
6Y 3.5538 4.0376 3.1187 0.2387 0.2853 -0.9597 12.9860*** 0.9884
Y 3.7987 4.2369 3.3962 0.2016 0.1829 -0.5000 3.9975 0.9915
8Y 3.8313 4.3151 3.4049 0.2080 0.2684 -0.4160 4.8045% 0.9830
9y 3.9251 4.4452 3.5102 0.2044 0.4912 -0.0987 10.1529%** 0.9790
10Y 4.0090 4.5562 3.4563 0.2440 0.1053 -0.4801 2.8625 0.9829
11Y 4.1204 4.6327 3.7091 0.2119 0.3672 -0.1985 6.0273** 0.9882
12Y 4.1780 4.6529 3.8664 0.1873 0.5665 0.2509 14.0255%** 0.9896
13y 4.1855 4.6612 3.8563 0.1917 0.3750 -0.1591 6.1243** 0.9925
14y 4.2179 4.7072 3.8585 0.2008 0.1021 -0.5567 3.6625 0.9956
15Y 4.3132 4.7797 3.8915 0.2150 -0.1169 -0.5837 4.1178 0.9989

Note: The statistics for inflation is based on monthly data, while those for nominal interest rates are based on daily data. *,

**and *** = significance at 90%, 95% and 99% confidence levels, respectively. The monthly sample for inflation is from

May 2000 to July 2014 (170 monthly observations) and the daily sample for nominal yields is from July 30, 2013 to August

8, 2014 (250 daily observations).

The study tests for normality of the nominal yields. The Jarque-Bera (JB) tests reject

the assumptions for most of the yields in the sample. Nevertheless, non-normality of the

nominal yields affects neither biasedness nor consistence of the IV estimates.

Finally, in the last column Table 1 reports the first-order autocorrelation coefficients

of the inflation and nominal yields. The AR(1) coefficients of nominal yields are positive, very

high and close to 1.00. This finding supports the use of 2-day lagged Ytlll\zl as IVs because

they are highly correlated with the 1-day lagged Ytl;l\i regressors. But it may raise concern as

to whether the nominal yields are (1) variables. As for this particular time-series property,

Khanthavit (2013) reported that the nominal yields were not I(1) variables but they followed

long-memory processes.
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4.2 The Number of Factors

In order to identify the number of latent factors, Khanthavit (2014a, b, c) employed
long time-series data of more than 10 years in the principal component analyses and found
that the first two principal components could explain about 98% of the yields’” variation.
Here, | use a sample of approximately one year. | perform the principal component analysis
based on the one-year recent data of nominal yields to reexamine the number of factors.
The result is reported in Table 2. | find similar results. The first two principal components
can explain 96.70% of the variation. With respect to this finding, | conclude that the number
K of latent factor is 2.

Table 2
Principal Component Analysis
Principal Component Contribution Accumulated Contribution
1 88.8606% 88.8606%
2 7.8473% 96.7079%
3 1.7342% 98.4421%
4 and Beyond 1.5579% 100.0000%

4.3 The Choice for Regressors and Instrumental Variables

Because there are K = 2 factors, | will have to choose two nominal yields to serve
as the regressors and IVs. With respect to the relationship in egs. (14.1) and (14.2), nominal
yields of any two tenors are equivalent. | choose 3-year and 7-year tenors for two reasons.
Firstly, the 3-year and 7-year tenors are considered benchmark tenors in Thailand’s bond
market. The 3-year tenor can represent bonds of shorter tenors and the 7-year tenor can
represent bonds of longer tenors. Secondly, Kiatnakin Bank compiled cumulative trading
values of the bonds in each tenor from October 2012 to July 2013 and found that the value

for the 3-year tenor was the highest and that for the 7-year tenor is the second highest.

5. Empirical Results
5.1 IV Regression Coefficients

Table 3 reports the IV regression coefficients of nominal yields on a constant 1-day
lagged demeaned 3-year and 7-year yields. All the coefficients are significant at a 99%
confidence level. As was pointed out by Khanthavit (2014a, b), highly significant regression

coefficients result from the long memory property of nominal yields. The IV regression
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coefficients and their consistent standard errors will be used for parameter estimation based

on the minimum chi-square objective.

Table 3
IV Regression Coefficients
Demeaned, Lagged 3Y Demeaned, Lagged 7Y
Maturity Constant
Yield Yield
M 8.91E-05 07732 0.1565
3M 9.01E-05 0.7985 0.1669
6M 9.156-05 0.8745 -0.2483
1y 9.24E-05 0.8696 02724
2y 1.02E-04 1.0574 0.2368
3y 113604 1.0060 0.0195
ay 1.27E-04 04241 03180
5Y 1.36E-04 03631 05917
6Y 1.41E-06 03680 0.6330
7Y 15104 0.0359 09373
8Y 152804 0.0886 0.8610
9y 1.56E-04 02162 12281
10Y 1.59E-04 -0.3569 15910
11Y 1.64E-04 0.2606 1.3398
12Y 1.66E-04 0.1875 11234
13Y 1.66E-04 01124 1.0483
14y 16706 0.0615 1.0134
15Y 171604 0.0044 0.9829

Note : The instrumental variables are constant, demeaned lagged-two 3Y yield and demeaned lagged-two 7Y yield,

respectively. - significant at a 99% confidence level, computed using autocorrelation consistent standard errors.

5.2 Parameter Estimates

Table 4 reports parameters [Win, T, A1, A2, B11, P12, P21, B22) @11, @21, @22,
02,02] of the model. iy = 2.6300% is the monthly average inflation multiplied by 12.

The value 04 = 0, = 0.0001 is fixed for standardization. The remaining parameters are

from minimum chi-square estimation. It is found that the parameter estimates are not very

close to the ones reported by Khanthavit (2014c) who uses the same minimum chi-square

estimation technique. The differences are not surprising but should be expected because

Khanthavit (2014c) considers a much longer sample period and a different set of projection

variables. Moreover, when this study considers lagged nominal yields as projection variables,
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the projection coefficients need not be estimated but are absorbed in the parameters of the

theoretical model.

Table 4

Parameter Estimates

Parameters Value
T X 25200 41729
Y1 13.0020
Y2 0.0479
)\1 1345.5976
}\2 -1579.1845
311 1.6503
812 -829.9405
[321 4.2856
Bzz -770.2675
P11 0.0032
P21 0.9998
(O 0.9999
(o] 0.0001
o, 0.0001
W, X 25200 26300

5.3 Specification Tests

| follow Ang et al. (2008) to conduct specification tests for the model. If the model

fits, the moments of sample and fitted nominal yields should not differ. Comparison of the

means, standard deviations, skewnesses and excess kurtoses are in Table 5. The numbers in

the first lines are for fitted yields and those in the second lines are their deviations from the

sample moments. Significance is based on the White (2000) procedure.

The deviations are small and not significant for all the moments and across

maturities, except for the standard deviations of almost all maturities. These findings may

result from the fact that the unbiased and consistent but less efficient weighting matrix is

substituted for the efficient one in minimum chi-square estimation. The resulting

unbiasedness and consistence are indicated by the small and insignificant deviations for the

first moments.

19




Table 5

Specification Tests

Descriptive Statistics

Maturity
Mean Std. Skew. E. Kurt

2.2738 0.3585 -0.5954 -0.6094

1M 0.0282 01521 -0.7623 1.0082
2.1812 0.3628 -0.5953 -0.6042

M -0.0902 0.1514 -0.7998 1.002
2.2245 0.3636 -0.5953 -0.6029

o -0.0806 0.1453 -0.8537 0.984
23615 0.3636 -0.5953 -0.6023

Y 0.0328 0.1524 -0.8806 0.9562
2.6436 0.3629 -0.5952 -0.602

2 0.0712 0.0903 -0.9801 0.7519
2.9063 0.3619 -0.5952 -0.6019

> 0.0641 0.0712 -0.7038 0.874
3.1453 0.3609 -0.5952 -0.6018

v -0.0548 0.1675 -1.0808 0.0987
3.3601 0.3599 -0.5952 -0.6018

> -0.0628 0.1354 -0.5204 0.6422
3.5505 0.3589 -0.5952 -0.6018

o -0.0033 0.1201" -0.8805 0.358
3.7169 0.3609 -0.5952 -0.6018

7Y -0.0818 0.1594 -0.7781 -0.1018
3.8594 0.3568 -0.5952 0.6017

o 0.0281 0.1488" -0.8636 -0.1857
3.9783 0.3558 -0.5952 -0.6017

g 0.0533 0.1515 -1.0864 -0.503
4.074 0.3548 -0.5952 -0.6017

1o 0.0649 0.1108 -0.7005 -0.1216
4.1466 0.3538 -0.5952 -0.6017

H 0.0262 0.1419" -0.9624 -0.4032
4.1964 0.3528 -0.5952 -0.6017

12 0.0184 0.1655 11617 -0.8526
4.2238 0.3518 -0.5952 0.6017

Y 0.0384 0.1601 -0.9703 -0.4426
4.2291 0.3508 -0.5952 0.6017

1 00112 0.1499" -0.6973 -0.045
4.2125 0.3498 -0.5952 -0.6017

Y -0.1007 01348~ -0.4783 -0.0180

Note: *, “and = significance at 90%, 95% and 99% confidence levels, respectively. The statistics on the upper lines are

those of the fitted yields and the ones on the lower lines are the deviations from sample statistics.
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The significant deviations for the standard deviations may be induced by the use of
less efficient weighting matrix. However, the significance should not cause poorer
performance of the estimation when it is compared with that of competing approaches. The
reasons are as follows. The significance of standard deviations was also reported for most
specifications of the Ang et al. (2008) model. Moreover, when it is compared with Khanthavit
(2014c) who uses an efficient weighting matrix, Khanthavit (2014c) reports 13 significance

cases while this study does 17 significance cases.

5.3 The Resulting Daily Real Yields

In Panel 6.1 of Table 6, the term structure of Thailand’s real yields is time varying. Its
average has a normal shape. The averages for 1-month up to 6-month maturities are
negative. They turn positive and rising for a 1-year maturity and over. When compared to
those in Khanthavit (2014c), the average curve is much lower. This result is expected
because our sample periods differ and the average nominal curve in this study is much
lower than that in Khanthavit (2014c).

Finally, the figure in Panel 6.2 shows the real curve for August 8, 2014, which is day
t=0 or the current date in the estimation. The figure demonstrates to practitioners that the

real curve can be updated daily by an up-to-date sample and model re-estimation.

6. Conclusion

Certain approaches that can be applied to estimate Thailand’s daily real yields are
not very useful to practitioners because they are complicated, data-intensive or numerically
challenging. This study proposes a simple and practical approach which practitioners can
actually use. It is based on minimum chi-square estimation. But the efficient weighting matrix
is replaced by a qualified but less efficient diagonal positive-semidefinite weighting matrix.
Simplicity and practicality are demonstrated by parameter estimation and real-yield
inference in Microsoft-Excel spreadsheets. It turns out the estimation and inference are
successful and fast.

Although the proposed approach is intended for practitioners in Thailand, it is
general and can be applied in those countries where the markets for inflation-linked bonds
and inflation derivatives are inactive or inexistent but the data on daily nominal yields and
monthly inflation are available. It is interesting to ask how practical the proposed approach

is in other emerging markets. | leave this question for future research.
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Table 6
Daily Term Structures
Panel 6.1
Real Yields

Maturity Average Max Min Std.
M -0.0176 -0.4130 0.3960 0.1818
3M -0.1043 -0.4959 0.3053 0.1807
6M -0.0595 -0.4500 0.3490 0.1807
1Y 0.0782 -0.3113 0.4858 0.1805
2Y 0.3610 -0.0273 0.7674 0.1801
3y 0.6246 0.2372 1.0299 0.1797
ay 0.8646 0.4783 1.2689 0.1793
5Y 1.0806 0.6952 1.4839 0.1789
6Y 1.2726 0.8881 1.6749 0.1784
1Ad 1.4405 1.0570 1.8418 0.1780
8Y 1.5847 1.2021 1.9850 0.1776
9Y 1.7053 1.3237 2.1047 0.1771
10Y 1.8027 1.4220 2.2011 0.1767
11Y 1.8769 1.4971 22744 0.1763
12y 1.9284 1.5495 2.3248 0.1759
13y 1.9572 1.5793 2.3527 0.1754
14y 1.9637 1.5867 2.3583 0.1750
15Y 1.9481 1.5720 23417 0.1746

Note: Day t=1 is July 30, 2013 and Day t=250 is August 8, 2014.
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Panel 6.2
Estimated Real Yields on Day t=0, August 8, 2014
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