

การประชุมทางวิชาการ "*ศาสตราจารย์สังเวียน อินทรวิชัย* ด้านตลาดการเงินไทย" ครั้งที่ 22 ประจำปี 2557

การนำเสนอผลงานวิจัยเรื่อง

"A Trade-Off in Corporate Diversification"

โดย ผู้ช่วยศาสตราจารย์ ดร.มนพล เอกโยคะ

วันพฤหัสบดีที่ 13 พฤศจิกายน 2557 เวลา 15.00 – 15.50 น. ห้อง 201 คณะพาณิชยศาสตร์และการบัญชี มหาวิทยาลัยธรรมศาสตร์ ท่าพระจันทร์

A trade-off in corporate diversification

Manapol Ekkayokkaya Chulalongkorn Business School

> Krishna Paudyal University of Strathclyde

การประชุมวิชาการ ศาสตราจารย์สังเวียน อินทรวิชัย ด้านตลาดการเงินไทย THAMMASAT FINANCE CONFERENCE NOVEMBER 13, 2014

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

motivation and what we do (1 of 3)

Is corporate diversification good or bad for shareholders ??

Can firms create value (risk-adjusted return) by diversifying into different business ??

Do shareholders earn more from conglomerates than from specialized firms ??

Still a largely unsettled debate – either theoretically or empirically Empirical evidence: as a whole, remains inconclusive Theoretical works: as a whole, no clear-cut prediction on value impact (Stein 2003)

facts

More than half of goods and services in U.S. economy is delivered by conglomerates (Maksimovic & Phillips 2007)

some current beliefs

Diversification is inefficient (due to agency problems) vs. not sure

motivation and what we do (2 of 3)

A step forward in understanding how diversification affects wealth ...

To identify when costs exceed benefits and vice versa (Hadlock et al. 2001)

For corporate finance, a primary question about diversification is When and how diversification affects value is (Maksimovic & Phillips 2007)

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

motivation and what we do (3 of 3)

WHAT WE DO:

Examine *when* the benefits of corporate diversification exceed the costs, and vice versa

framework for analysis

Marginal benefits of diversification exceed marginal costs at a decreasing rate, and costs will exceed benefits if firms diversify beyond the optimal level

This cost-benefit trade-off facing shareholders predicts:

An inverted U-relation between shareholder wealth and the degree to which a firm operates in different industrial segments

trade-off proposition (1 of 3)

We rely on existing theoretical insights in suggesting the trade-off proposition

TWO strands of diversification literature

Diversification benefits shareholders and improves wealth

benefits: scope economies; coinsurance; reduction in systematic risk; efficient winnerpicking and loser-sticking; survival of profitable projects; search for new growth opportunities

Diversification is costly and destroys shareholder wealth

costs: bottlenecks in accessing scope economies (due to bounded rationality); uncorrelated valuation errors in picking winners; agency problems making internal allocation inefficient (politics among and surplus poaching by divisional managers, free cash flow problem, entrenchment)

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

trade-off proposition (2 of 3)

Characterization of inefficient conglomerates

Firms with many related divisions

WE ARGUE:

- Such characterization implies material and increasingly large costs for highly diversified firms
- With increasingly large offsetting costs, there is a trade-off predicting an inverted U-relation between wealth and degree of diversification
- If assuming <u>no</u> offsetting costs, shareholder wealth would strictly increase in diversification

trade-off proposition (3 of 3)

figure 1

The trade-off predicts curve ABDF (inverted U-relation)

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

empirical design (1 of 5)

a direct test of the trade-off prediction – inverted-U shape

To observe ΔW as firms diversify (make an increase in diversification)

General expression of ABDF (quadratic): $W_m = W_s + b(d) + c(d^2)$

As a firm diversifies:

$$\Delta W = W_{m,1} - W_{m,0} = W_s + b(d_1) + c(d_1^2) - W_s - b(d_0) - c(d_0^2)$$

Defining $\delta = d_1 - d_0$

 $\Delta W = b(\delta) + c(2d_0\delta + \delta^2)$

Trade-off predicts a positive value for *h* and negative value for *c*

empirical design (2 of 5)

We test the trade-off prediction by estimating variants of a regression model:

$$\Delta W_i = \beta_1 + \beta_2(\delta_i) + \beta_3 \left(2d_{0,i}\delta_i + \delta_i^2 \right) + \varepsilon_i \tag{4}$$

Conditional on making a diversification attempt, the trade-off predicts a **positive sign for** $\hat{\beta}_2$ and negative sign for $\hat{\beta}_3$

We use *diversifying* acquisitions as a proxy for diversification attempts

Firms commonly diversify through acquisitions (Graham et al. 2002; Maksimovic & Phillips 2007)

 $\Delta W_i \equiv announcement-period excess return [-2, +2]$ (Masulis et al 2007)

Excess return = market-adjusted excess return [$r_i - r_m$] (e.g., Fuller et al 2002)

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

empirical design (3 of 5)

identifying diversification attempts

Diversification attempt \equiv a diversifying acquisition / deal

Diversifying deal defined as:

- (i) acquirer and target not sharing same 2-digit primary SIC code; and
- (ii) degree of vertical relatedness (using IO tables as in Fan & Lang, 2000) between acquirer and target primary industries not greater than 5%

²⁻digit level because 3- or 4-digit level likely to be too detailed to identify industry structure (Servaes, 1996; Maquieira et al., 1998) and can be misleading (Kahle & Walkling, 1996)

SIC codes come from SDC as we need historical SIC codes. Compustat reports latest codes. Anyway, code definitions between the two sources are identical at the 2-digit level (cf: Schlingemann et al., 2002)

empirical design (4 of 5)

measuring degree of diversification

- Given equation (4), we need to empirical estimates of $d_{0,i}$ and δ_i around bid announcements from *actual* data
- The *directly applicable* approach is to use the number of 2-digit SIC codes (i.e., segments)
- $d_{0,i} \equiv$ no. of segments of acquirer *i* observed before bid announcement
- $\delta_i \equiv$ no. *new* segments added to corporate portfolio of acquirer *i* through the acquisition it makes (i.e., no. of target's segments observed before bid announcement that are not the same as any of acquirer's segments)

Potentially noisy measure, and will tilt our results towards being insignificant

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

empirical design (5 of 5)

data and sample

Domestic deals announced between January 1990 and December 2010

SDC, CRSP, Compustat

Targets can be listed or unlisted (private and subsidiary)

Usual data screen: e.g., completed deals; DV ≥ \$1 million; acquirer holds less than 50% before announcement; acquirer a listed firm on CRSP and Compustat

In total, 16,455 deals remain in final sample

4,621 (28%) diversifying deals; 1,944 vertically related deals; 9,890 focused deals

descriptive statistics (1 of 2)

					_			
		Number of acq	uisitions			Excess ret	urns (%)	
	Entire		Vertically		Entire		Vertically	
Year	sample	Diversifying	related	Focused	sample	Diversifying	related	Focused
All	16,455	4,621	1,944	9,890	1.76	1.76	1.83	1.75
1990	206	55	34	117	1.21	1.67	-0.21	1.40
1991	339	93	34	212	3.43	5.01	0.10	3.27
1992	481	138	50	293	3.52	3.70	3.61	3.43
1993	676	186	89	401	2.74	2.38	2.68	2.93
1994	776	244	96	436	2.48	2.48	2.38	2.50
1995	891	260	85	546	1.62	1.42	0.53	1.88
1996	1,174	329	151	694	2.34	2.56	3.35	2.02
1997	1,438	410	184	844	1.99	1.90	1.99	2.03
1998	1,405	390	198	817	1.33	1.34	1.28	1.33
1999	1,205	338	133	734	2.95	2.51	2.07	3.31
2000	1,125	357	97	671	0.48	0.79	3.20	-0.09
2001	715	199	72	444	1.52	1.18	2.50	1.51
2002	712	205	70	437	1.64	1.53	1.70	1.68
2003	689	204	71	414	1.77	1.73	3.69	1.46
2004	765	199	95	471	1.23	1.87	0.51	1.10
2005	829	214	111	504	1.34	0.93	0.55	1.68
2006	823	232	98	493	0.96	0.96	1.00	0.95
2007	781	210	107	464	1.33	1.14	1.83	1.30
2008	567	129	67	371	0.90	0.18	2.12	0.93
2009	427	117	55	255	1.64	1.85	0.61	1.76
2010	431	112	47	272	1.36	1.73	0.25	1.40

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

descriptive statistics (2 of 2)

Number of segments in diversifying acquisitions

Number	А	cquire	r	r	Target		New	New segments			Acquirer		
of	pre-a	acquisi	tion	pre-a	pre-acquisition			added			post-acquisition		
segments	Count	% (Cum. %	Count	% (Cum. %	Count	% (Cum. %	Count	% (Cum. %	
0							1,392	30.1	30.1				
1	1,125	24.3	24.3	2,788	60.3	60.3	2,414	52.2	82.4				
2	1,419	30.7	55.1	1,301	28.2	88.5	634	13.7	96.1	1,364	29.5	29.5	
3	1,040	22.5	77.6	362	7.8	96.3	129	2.8	98.9	1,338	29.0	58.5	
4	526	11.4	88.9	109	2.4	98.7	36	0.8	99.7	874	18.9	77.4	
5	221	4.8	93.7	39	0.8	99.5	6	0.1	99.8	501	10.8	88.2	
6	88	1.9	95.6	9	0.2	99.7	5	0.1	99.9	213	4.6	92.8	
7	98	2.1	97.7	7	0.2	99.9	4	0.1	100.0	149	3.2	96.1	
8	39	0.8	98.6	4	0.1	100.0	0	0.0	100.0	78	1.7	97.7	
9	34	0.7	99.3	1	0.0	100.0	0	0.0	100.0	44	1.0	98.7	
10	28	0.6	99.9	0	0.0	100.0	1	0.0	100.0	25	0.5	99.2	
11	3	0.1	100.0	1	0.0	100.0				20	0.4	99.7	
12										9	0.2	99.9	
13										0	0.0	99.9	
14										5	0.1	100.0	
15										0	0.0	100.0	
16										1	0.0	100.0	
Total count	4,621			4,621			4,621			4,621			

empirical results (1 of 9)

Explanatory variables	1	2	3	4	5	6
δ_t	1.319	1.365	1.398	0.857	0.894	1.221
	(0.000)	(0.000)	(0.000)	(0.007)	(0.070)	(0.018)
$\left(2d_{0,i}\delta_i + \delta_i^2\right)$	-0.103	-0.103	-0.111	-0.057	-0.075	-0.101
	(0.000)	(0.000)	(0.000)	(0.033)	(0.046)	(0.016)
Acquirer size				-0.327		-0.720
				(0.008)		(0.181)
Tobin's q				-0.371		-0.475
				(0.321)		(0.529)
Leverage				1.808		4.203
				(0.175)		(0.098)
Free cash flow				-8.128		-14.419
				(0.011)		(0.001)
Private target				-0.495		-0.010
				(0.171)		(0.983)
Public target				-1.737		-1.700
				(0.000)		(0.003)
All cash				0.584		0.836
				(0.064)		(0.031)
All stock				2.272		0.941
				(0.002)		(0.309)
Public target × all stock				-3.449		-1.777
				(0.001)		(0.139)
Relative size				0.472		0.275
				(0.000)		(0.094)
Target industry liquidity				-0.021		-0.102
				(0.875)		(0.582)
Constant	1.163	1.022	1.743	4.385	2.075	4.476
	(0.000)	(0.445)	(0.214)	(0.000)	(0.345)	(0.247)
Year fixed effects		~	~	~	~	~
Industry fixed effects			~	~		
Firm fixed effects					~	~
R ² (%)	0.33	0.58	0.66	3.92	31.83	32.99
No. of usable observations	4,621	4,621	4,621	4,621	4,621	4,621

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

empirical results (2 of 9)

Explanatory variables	1	2	3	4	5	6
δ_i	1.319	1.365	1.398	0.857	0.894	1.221
	(0.000)	(0.000)	(0.000)	(0.007)	(0.070)	(0.018)
$(2d_{0,i}\delta_i+\delta_i^2)$	-0.103	-0.103	-0.111	-0.057	-0.075	-0.101
	(0.000)	(0.000)	(0.000)	(0.033)	(0.046)	(0.016)
Control variables				\checkmark		\checkmark
Year fixed effects		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Industry fixed effects			\checkmark	\checkmark		
Firm fixed effects					\checkmark	\checkmark
<i>R</i> ² (%)	0.33	0.58	0.66	3.92	31.83	32.99
No. of usable observations	4,621	4,621	4,621	4,621	4,621	4,621

Strong empirical support for the trade-off prediction

Diversification significantly increases wealth at a decreasing rate, and diversifying beyond the optimal level will hurt shareholders

Diversification can turn out both the bright side and dark side

(continued)

empirical results (3 of 9)

(continued)

16

Implied optimum $\left[-\frac{\beta_2}{2\beta_3}\right]$ of about 6 to 7 segments

Intriguingly, in line with classification in Shin and Stulz (1998)

Given sample distributions:

Number of	A pre-a	cquire acquisi	r tion	pre-a	Farget Icquisi	tion	New	v segme added	ents	A post-	cquire acquis	er sition
segments	Count	%	Cum. %	Count	%	Cum. %	Count	%	Cum. %	Count	%	Cum. %
0							1,392	30.1	30.1			
1	1,125	24.3	24.3	2,788	60.3	60.3	2,414	52.2	82.4			
2	1,419	30.7	55.1	1,301	28.2	88.5	634	13.7	96.1	1,364	29.5	29.5
3	1,040	22.5	77.6	362	7.8	96.3	129	2.8	98.9	1,338	29.0	58.5
4	526	11.4	88.9	109	2.4	98.7	36	0.8	99.7	874	18.9	77.4
5	221	4.8	93.7	39	0.8	99.5	6	0.1	99.8	501	10.8	88.2

Diversifiers in our sample appear under-diversified

Comforting as it is in line with irreversibility of diversifying decisions (Denis et al., 1997; Gomes and Livdan, 2004)

Diversifying decisions not costlessly reversible

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

empirical results (4 of 9)

How much do firms gain from optimal diversification and lose from diversifying beyond the optimal level ??

Diversifier number of		Number o	f new segme	ew segments added		
segments	All	0	1	2 or more		
Single-segment	2.49	na	2.18	3.57		
	(0.000)	(na)	(0.000)	(0.000)		
	[1,125]	[na]	[875]	[250]		
2 to 5 segments	1.60	1.23	1.74	2.13		
	(0.000)	(0.000)	(0.000)	(0.000)		
	[3,206]	[1,249]	[1,440]	[517]		
6 or more segments	0.66	1.22	0.34	-0.38		
	(0.065)	(0.009)	(0.560)	(0.742)		
	[290]	[143]	[99]	[48]		
F-statistic	6.691	0.000	3.485	3.988		
	(0.001)	(0.997)	(0.032)	(0.021)		

Firms diversify cautiously and stop diversifying before the marginal benefits are completely offset by the increasing costs

Also consistent with trade-off prediction, gains monotonically decrease in d_0

empirical results (5 of 9)

Are the results above chance results ?? That is, is the trade-off prediction refutable ??

	1	2
Explanatory variables	Focused	Vertically related
δ_i	0.732	-1.592
	(0.181)	(0.118)
$\left(2d_{0,i}\delta_i+\delta_i^2\right)$	-0.074	0.073
	(0.226)	(0.440)
Control variables	\checkmark	\checkmark
Year fixed effects	\checkmark	\checkmark
Firm fixed effects	\checkmark	\checkmark
R^{2} (%)	21.26	49.51
No. of usable observations	9,890	1,944

Trade-off prediction (inverted U-relation) holds only for diversifying deals Results above unlikely chance results, and trade-off proposition refutable

Our measure of degree of diversification unlikely to be overly noisy

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

empirical results (6 of 9)

We now subject the trade-off prediction to a further test . ..

If a robust description of how diversification affects wealth, value of the <u>same</u> firms should exhibit the inverted U-behavior when the firms make diversifying deals at some time, but do not do so when they make nondiversifying deals at other times.

	1	2	3
Explanatory variables	Diversifying	Focused	Vertically related
δ_i	2.455	-2.184	-2.009
	(0.021)	(0.237)	(0.192)
$\left(2d_{0,i}\delta_i+\delta_i^2\right)$	-0.152	0.047	0.072
	(0.037)	(0.770)	(0.570)
Control variables	\checkmark	\checkmark	\checkmark
Year fixed effects	\checkmark	\checkmark	\checkmark
Firm fixed effects	\checkmark	\checkmark	\checkmark
R^{2} (%)	27.39	53.63	33.83
No. of usable observations	1,193	592	1,445

empirical results (7 of 9)

Acquisitions essentially our empirical lab

Listing effect as one important stylized fact from recent M&As literature

Acquirers suffer a small announcement-period loss when the target is a publicly listed firm, but a significant gain when the target is an unlisted entity (e.g., Faccio et al., 2006; Netter et al., 2011)

86% of our sample diversifying attempts involves an unlisted target

We address a fundamental implication of the listing effect

The negative wealth of choosing a <u>listed</u> target may well eat up all of the net benefits of diversification even when a diversification attempt, *in and of itself*, is wealth-maximizing

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

empirical results (8 of 9)

	Listed targets	Unlisted targets	Listed vs. unlisted
Panel A: Full sample	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	
All diversifiers	-0.50	2.12	-2.62
	(0.118)	(0.000)	(0.000)
	[639]	[3,982]	
Panel B: Subsamples by d	iversifier number o	of segments	
Single-segment	-0.34	2.80	-3.14
0 0	(0.711)	(0.000)	(0.002)
	[112]	[1,013]	
2 to 5 segments	-0.49	1.94	-2.42
	(0.196)	(0.000)	(0.000)
	[443]	[2,763]	
6 or more segments	-0.80	1.25	-2.05
	(0.294)	(0.002)	(0.017)
	[84]	[206]	
<i>F</i> -statistic	0.092	4.142	
	(0.913)	(0.016)	

Listing effect also does exist among diversifying acquisitions

empirical results (9 of 9)

	Diversifying		Verticall	y related	Focu	Focused	
Explanatory variables	Listed	Unlisted	Listed	Unlisted	Listed	Unlisted	
δ_i	0.548	1.476	3.530	-1.621	1.415	0.712	
	(0.548)	(0.016)	(0.402)	(0.320)	(0.193)	(0.324)	
$(2d_{0,i}\delta_i+\delta_i^2)$	-0.035	-0.138	-0.193	0.065	-0.147	-0.089	
	(0.438)	(0.003)	(0.632)	(0.712)	(0.195)	(0.321)	
Control variables	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Year fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Firm fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
R ² (%)	35.40	32.06	49.38	49.44	30.67	20.96	
No. of usable observations	639	3,982	242	1,702	1,456	8,434	

No reliable gain from diversifying by acquiring a listed target

Trade-off explains only the diversification gains from acquisitions of unlisted targets – common means through which firms diversify (Graham et al. 2012)

In contrast, trade-off does not explain gains from non-diversifying acquisitions of *unlisted* targets – confirming refutability of trade-off prediction despite the listing effect

A trade-off in corporate diversification (Ekkayokkaya & Paudyal)

conclusion (1 of 1)

- At low levels of diversification, marginal benefits exceed costs at a decreasing rate, and costs exceed benefits if firms diversify beyond the optimal level
- Firms in general cautiously diversify and stop diversifying before the benefits are completely offset by the costs
- First to provide evidence on when benefits of corporate diversification exceed costs and vice versa, thereby addressing the fundamental, but as yet unsettled, issue of how diversification affects wealth
- Importantly, our evidence also indicates that diversification is an efficient corporate strategy, and offers an understanding of the large prevalence of conglomerates in the U.S. economy
- Trade-off framework can be applied to investigate benefits and costs of diversification in economies with different institutional features (e.g., capital market and/or product market competition)