Exercise 14-2 (30 minutes)

1. Annual savings in part-time help	\$3,800
Added contribution margin from expanded sa	les
(1,000 dozen × \$1.20 per dozen)	<u>1,200</u>
Annual cash inflows	<u>\$5,000</u>

2. Factor of the internal rate of return
$$= \frac{\text{Investment required}}{\text{Annual cash inflow}}$$
$$= \frac{\$18,600}{\$5,000} = 3.720$$

Looking in Exhibit 14B-2, and scanning along the six-period line, we can see that a factor of 3.720 falls closest to the 16% rate of return.

3. The cash flows will not be even over the six-year life of the machine because of the extra \$9,125 inflow in the sixth year. Therefore, the above approach cannot be used to compute the internal rate of return in this situation. Using trial-and-error or some other method, the internal rate of is 22%:

				Present
		Amount of	22%	Value of
<i>Item</i>	Year(s)	Cash Flows	Factor	Cash Flows
Initial investment	Now	\$(18,600)	1.000	\$(18,600)
Annual cash inflows.	1-6	\$5,000	3.167	15,835
Salvage value	6	\$9,125	0.303	<u>2,765</u>
Net present value				<u>\$ 0</u>