Problem 6-30 (30 minutes)

1. The contribution margin per sweatshirt would be:

Selling price		\$13.50
Variable expenses:		
Purchase cost of the sweatshirts	\$8.00	
Commission to the student salespersons.	1.50	9.50
Contribution margin		\$ 4.00

Since there are no fixed costs, the number of unit sales needed to yield the desired \$1,200 in profits can be obtained by dividing the target \$1,200 profit by the unit contribution margin:

$$\frac{\text{Target profit}}{\text{Unit contribution margin}} = \frac{\$1,200}{\$4.00} = 300 \text{ sweatshirts}$$

300 sweatshirts \times \$13.50 per sweatshirt = \$4,050 in total sales

2. Since an order has been placed, there is now a "fixed" cost associated with the purchase price of the sweatshirts (i.e., the sweatshirts can't be returned). For example, an order of 75 sweatshirts requires a "fixed" cost (investment) of \$600 (=75 sweatshirts × \$8.00 per sweatshirt). The variable cost drops to only \$1.50 per sweatshirt, and the new contribution margin per sweatshirt becomes:

Selling price	\$13.50
Variable expenses (commissions only)	1.50
Contribution margin	<u>\$12.00</u>

Since the "fixed" cost of \$600 must be recovered before Mr. Hooper shows any profit, the break-even computation would be:

Unit sales to break even =
$$\frac{\text{Fixed expenses}}{\text{Unit contribution margin}}$$

= $\frac{\$600}{\$12.00}$ = 50 sweatshirts

50 sweatshirts \times \$13.50 per sweatshirt = \$675 in total sales

If a quantity other than 75 sweatshirts were ordered, the answer would change accordingly.