1S311

Data Structures and
Java Collections Framework

Algorithms and Data Structures
* Algorithm

— Sequence of steps used to solve a problem
— Operates on collection of data
— Each element of collection -> data structure

« Data structure
— Combination of simple / composite data types
— Design -> information stored for each element

— Choice affects characteristic & behavior of algorithm
— May severely impact efficiency of algorithm

Data Structures

« Taxonomy
— Classification scheme
— Based on relationships between element

« Category Relationship

— Linear one -> one
— Hierarchical one -> many
— Graph many -> many

— Set none -> none

Data Structures

* Core operations
— Add element
— Remove element
— lterate through all elements
— Compare elements

Linear Data Structures

One-to-one relationship between elements (a1
eing, DIAUTENDLNAFIU)
— Each element has unique predecessor (A1)
— Each element has unique successor (AIANNH1A)

first last

unique unique
predecessor successor

Linear Data Structures

* Core operations

— Find first element (head - #2)
— Find next element (successor)
— Find last element (tail - 1)

* Terminology
— Head -> no predecessor
— Tail -> no successor

Example Linear Data Structures
« List

— Collection of elements in order

* Queue
— Elements removed in order of insertion

— First-in, First-out (FIFO)
« Stack

— Elements removed in opposite order of insertion
— First-in, Last-out (FILO)

— OO OO
-

Hierarchical Data Structures

* One-to-many relationship between elements
— Each element has unique predecessor
— Each element has multiple successors

unique
predecessor

many
successors

.
-
.
-
.
“’
".‘
-
-
-
e
e
" -
’ - -
-
a“
-"
eennnennne l@AVES -

Hierarchical Data Structures

* Terminology
— Root -> no predecessor

— Leaf -> no successor
— Interior -> non-leaf

— Children -> successors
— Parent -> predecessor

* Core operations
— Find first element (root)
— Find successor elements (children)
— Find predecessor element (parent)

Example Hierarchical Data Structures

* Tree
— Single root

 Forest
— Multiple roots

* Binary tree
— Tree with 0-2 children per node

S5 cs%o%

Tree Binary Tree

Graph Data Structures

* Many-to-many relations
— Each element has multip
— Each element has multip

nip between elements
e predecessors

€ SUCCESSOIs

many ---eseeTTT >
predecessors

. many
successors

- -
--"'

Graph Data Structures

* Terminology
— Directed -> traverse edges in one direction

— Undirected -> traverse edges in both directions
— Neighbor -> adjacent node
— Path -> sequence of edges

— Cycle -> path returning to same node

— Acyclic -> no cycles
* Core operations

~ind successor nodes
~ind predecessor nodes

~ind adjacent nodes (neighbors)

12

Example Graph Data Structures
* Undirected graph

— Undirected edges
* Directed graph
— Directed edges
* Directed acyclic graph (DAG)

— Directed edges, no cycles

Pogil,

Undirected Directed DAG

13

Set Data Structures

* No relationship between elements
— Elements have no predecessor / successor
— Only one copy of element allowed in set

14

Set Data Structures

* Terminology
— Subset -> elements contained by set

— Union -> select elements in either set
— Intersection -> select elements in both sets
— Set difference -> select elements in one set only

« Core operations
— Add set, remove set, compare set

15

Example Set Data Structures

¢ Set

— Basic set

« Map

— Map value to element in set

« Hash Table

— Maps value to element in set using hash function

Set

Hash Table

16

Software Framework

software framework is an abstraction in which software
providing generic functionality can be selectively changed
by additional user-written code, thus providing
application-specific software. A software framework is a
universal, reusable software environment that provides
particular functionality as part of a larger software

platform to facilitate development of software applications,
products and solutions. Software frameworks may include
support programs, compilers, code libraries, tool sets, and
application programming interfaces (APIs) that brlng
together all the different components to enable " 5 < \\
development of a project or solution.

@Lﬁutﬁuﬁ: https://en.wikipedia.org/wiki/Software_framework

Java Collections Framework

* Collection
— Obiject that groups multiple elements into one unit
— Also called container

 Collection framework consists of

— Interfaces
« Abstract data type

— Implementations
 Reusable data structures

— Algorithms

* Reusable functionality

18

Java Collections Framework

* Goals
— Reduce programming effort
— Make APls easier to learn
— Make APls easier to design and implement
— Reuse software
— Increase performance

19

Core Collection Interfaces

Collection

— Group of elements

Set

— No duplicate elements
List

— Ordered collection

Map

— Maps keys to elements
SortedSet, SortedMap
— Sorted ordering of elements

20

Core Collection Hierarchy

SortedSet

21

Collections Interface Implementations

* General implementations
— Primary public implementation

— Example
e List— ArrayList, LinkedList
e Set — TreeSet, HashSet
« Map — TreeMap, HashMap

22

Collection Interface Methods

Aanarne ¢ fitllu collection 289311 du5a L anan
aaluiiderivualiludumnasing Collection 6

e boolean add(Object 0)

— Add specified element
e boolean contains (Object o)

— True if collection contains specified element
e boolean remove (Object 0)

— Removes specified element from collection
e boolean equals (Object 0)

— Compares object with collection for equality

23

Collection Interface Methods

boolean addAll (Collection c¢)

— Adds all elements in specified collection

boolean containsAll (Collection c¢)

— True if collection contains all elements in collection
boolean removeAll (Collection c¢)

— Removes all elements in specified collection
boolean retainAll (Collection c)

— Retains only elements contained in specified collection
vold clear ()

— Removes all elements from collection

24

Collection Interface Methods

e boolean i1sEmpty ()
— True if collection contains no elements
e 1nt size ()
— Returns number of elements in collection
e Object[] toArray ()
— Returns array containing all elements in collection
e Tterator i1terator ()
— Returns an iterator over the elements in collection

Collection iU subinterface 284 Iterable T lANIMUANNDA iterator () 1Y

auiNTgaziBaainlan
https://docs-.oracle.com/javase/&/docs/api/java/util/Collection-html
25

Iterator Interface

e [terator

— Common interface for all Collection classes
— Used to examine all elements in collection

* Properties
— Order of elements is unspecified (may change)
— Can remove current element during iteration
— Works for any

iterate a1 N2 158 Nan

26

e |nterface

public interface Iterator {
boolean hasNext () ;
Object next();
void remove(); // optional,

)
 Example usage

Tterator Interface

called once per next ()

Tterator 1 = myCollection.iterator();

while (i.hasNext()) {

myCollectionElem x
1.next (),

(myCollectionElem)

27

New Features in Java 1.5

Enumerated types

Enhanced for loop

Autoboxing & unboxing

Scanner

Generic types <«

Variable number of arguments (varargs)
Static imports

Annotations

28

Generics — Motivating Example

* Problem
— Ultility classes handle arguments as Objects
— ODbjects must be cast back to actual class
— Casting can only be checked at runtime

 Example
class A { .. }
class B { .. }
List myL = new List();
myL.add (new A()); // Add an object of type A

B b = (B) myL.get(0);// throws runtime exception
// java.lang.ClassCastException

29

Solution — Generic Types

Generic types

— Provides abstraction over types

— Can parameterize classes, interfaces, methods
— Parameters defined using <x> notation

Examples
— public class foo<x, vy, z> { ..}
— public class List<String> { .. }

Improves
— Readability & robustness
Used in Java Collections Framework

30

Generics — Usage

* Using generic types
— Specify <type parameter> for utility class

— Automatically performs casts
— Can check class at compile time

 Example
class A { .. }
class B { .. }
List<A> myL =
myL.add (new A (
myL.add (new B (

)
)
A a = myL.get (0)

new List<A>();
) ; // Add an object of type A
) ; // cause compile time error

// myL element ->class A
B b= (B) myL.get(0); // causes compile time error

31

Generics — Issues

* Generics and subtyping
— Even if class A extends class B

— List<A> does not extend I.ist

 Example
class B { .. }
class A extends B { .. } // A is subtype of B
B b = new A(); // A used in place of B
List myL = new List<A>(); // compile time error

// List<A> used in place of List
// List<A> is not subtype of List

32

Linear Data Structures

33

Static vs. Dynamic Structures

A static data structure has a fixed size

This meaning is different from the meaning of the
static modifier

Arrays are static; once you define the number of
elements it can hold, the number doesn’t change

A dynamic data structure grows and shrinks at execution
time as required by its contents

A dynamic data structure is implemented using /inks

34

Linked Lists

h

Head

 Alinked list is a series of connected nodes

« Each node contains at least
— A piece of data (any type)

— Pointer to the next node in the list

Head: pointer to the first node
* The last node points to NULL

node

data

pointer

3o

Object References

* Recall that an object reference is a variable that
stores the address of an object

* Areference also can be called a pointer

» References often are depicted graphically:

student

John Smith
40725
3.58

References as Links

* Object references can be used to create links
between objects

« Suppose a Student class contains a reference
to another Student object

John Smith Jane Jones
40725 58821
3.57 3.72

37

* References can be used to create a variety of

39

References as Links

linked structures, such as a linked list:

studentlList

38

Intermediate Nodes

The objects being stored should not be concerned
with the details of the data structure in which they
may be stored

For example, the Student class should not have
to store a link to the next Student object in the list

Instead, we can use a separate node class with
two parts: 1) a reference to an independent object
and 2) a link to the next node in the list

The internal representation becomes a linked list of
nodes

39

Inserting a Node

« A method called insert could be defined to add a

node anywhere in the list, to keep it sorted, for
example

* Inserting at the front of a linked list is a special case

node

list @
X I

40

Inserting a Node

* When inserting a node in the middle of a linked
list, we must first find the spot to insert it

« Let current refer to the node before the spot
where the new node will be inserted

current

node
42

41

Deleting a Node

« A method called delete could be defined to
remove a node from the list

* Again the front of the list is a special case:

list

}‘:ee»'—» — — — —h

> Deleting from the middle of the list:

list previous current

\——»—»l—><—»l—><—»—»4

| 1

42

Other Dynamic List Representations

It may be convenient to implement as list as a
doubly linked list, with next and previous

references
list

43

Other Dynamic List Implementations

It may be convenient to use a separate header node, with a
count and references to both the front and rear of the list

-

list count: 4

| _front

rear

44

Other Dynamic List Implementations

» Alinked list can be circularly linked in which case the last
node in the list points to the first node in the list

 If the linked list is doubly linked, the first node in the list
also points to the last node in the list

* The representation should facilitate the intended
operations and should make them easy to implement

45

Queues

* A queue is similar to a list but adds items only to the rear
of the list and removes them only from the front

* Itis called a FIFO data structure: First-In, First-Out

* Analogy: a line of people at a bank teller’'s window

dequeue enqueue

@ ([]]]] 6=

HEAD TAIL

Queues

* \We can define the operations for a queue
- enqueue () - add an item to the rear of the queue

— dequeue () -remove an item from the front of the queue
— isEmpty () - returns true if the queue is empty

* Queues often are helpful in simulations or any situation in
which items get “backed up” while awaiting processing

« Java provides a Queue interface, which the LinkedList
class implements:

Queue<String> g = new LinkedList<String> ()

47

public interface Queue<E> extends Collection<E>

public interface Queue<E> extends Collection<E> {
boolean add(E e) tWus18n15inuta1dTudn

boolean offer (E e) LANSIYNNST WU LN 11 TuAN

E element () ;
aupN

E peek();
boolean offer (E e);

E remove () ;

A ' S, 24 ~ ¢ o v '
AuA LTudau L Aandavunga las ly

=) ' (~f (2 [~ o o v '
AuAT LTS L AndanUNgA Lag ldauaan
Tasan1s1und e 191 1Y TudAn

P ' ¢ 6V ~ o v v
ﬂuﬂqLﬂuﬂﬂuLQﬂWﬂQﬁquﬂuazaUﬂﬂﬂ

E poll(); AuAT LTUBPU L ANAAIMUNFALAZAUDDN
}
Throws exception Returns special value
Insert add(e) offer(e)
Remove remove () poll()
Examine element () peek () 48

Priority Queues

In a priority queue, some elements get to “cut in line”

The enqueue and isEmpty operations behave the same
as with normal queues

The dequeue operation removes the element with the
highest priority

49

npNAaU (Stacks)

A stack ADT is also linear, like a list or a queue

Items are added and removed from only one end of a
stack

It is therefore LIFO: Last-In, First-Out

Analogies: a stack of plates in a cupboard, a stack of
bills to be paid, or a stack of hay bales in a barn

50

Stacks

« Stacks often are drawn vertically:

push pop

Plate Lowerator/Stacker
AINAN hitp://www.southernhospitality.co.nz/

91

Stacks

Some stack operations:
— push () - add an item to the top of the stack
— pop () - remove an item from the top of the stack
— peek () - retrieves the top item without removing it
- isEmpty () - returns true if the stack is empty
— search (Object o) - Returns the 1-based position

A stack can be represented by a singly-linked list; it
doesn’t matter whether the references point from the top
toward the bottom or vice versa

A stack can be represented by an array

52

Stacks

« The Stack class is part of the Java Collections
APl and thus is a generic class

Stack<String> strStack = new Stack<String>()

53

BUWNDSING ListIterator <E>

« ilu subinterface 2994 Tterator <E> ansuldnu LinkedList

o FNNDALANNLANNN Iterator AB

void add(E e) indugneaslu list A5901LANINDUNILSBNNNEA next ()
boolean hasPrevious () NAMN1AdURU%RID L4
E previous() LAUDDERAN 1 AWAUNLANANAN L TUBULANG & ANurudeUy

void remove () audusiaamaIganlaannIszanunen next () Wi
previous 88NN list

void set (E e) W1diuting e wununsunisaugasaranganlaainnissan
WNBA next () 58 previous ()

int nextIndex () Auaily index aavdrugasfiazldannisisanufian next ()
luarauan

int previousIndex () auailu index 2avaiutnafiazldarnnisisan

WNBA previous () uWa1auna by

94

