IS311

Java Collections Framework

(72)

Collections

Collections are holders that let you store and organize objects
in useful ways for efficient access.

In the package java.util, there are interfaces and classes
that provide a generic collection framework.

The Collections interfaces: Collection<E>, Set<E>,
SortedSet<E>, List<E>, Queue<E>, Map<K,V>,
SortedMap<K,V>, Iterator<E>, ListlIterator<iE>,
ITterable<E>

Some useful implementations of the interfaces: HashSet<E>,
TreeSet<E>, ArrayList<E>, LinkedList<E>,
HashMap<K, V>, TreeMap<K,V>, WeakHashMap<K, V>

Exceptions:

e UnsupportedOperationException
e ClassCastException

e IllegalArgumentException

e NoSuchElementException

e NullPointerException

Type Trees for Collections

[Iterable<E>] [Iterator<eE>]
A A
[Collection<E>‘ [ListIerator<E]
I, o A Cee Z
Set<E> | [Queue<E> List<E> |
E O S N .. |
f . ‘a EnumSet<E> | —a) ArrayList<E>
Sortei?et<E> s PriorityQueue<E>-| !
HashSet<E> | LinkedList<E>
TreeSet<E> T
LinkedHashSet<E>
[Map<K, V>]Y
,,,,,, 24 ~ Y-
‘‘‘‘‘‘‘‘‘ 3 ., N EnumMap<K,6 V>
""""" E WeakHashMap<K, V>
[SortedMap<K, V>] Y
A HashMap<E>
TreeMap<K, V> T
LinkedHashMap<K, V>

The Collections Framework

+ The Java collection framework is a set of generic types that are used
to create collection classes that support various ways to store and
manage objects of any kind in memory.

+ Ageneric type for collection of objects: To get static checking by the
compiler for whatever types of objects to want to manage.

Generic Types

Generic Class/Interface Type

Description

The lterator<T> interface type

Declares methods for iterating through elements of a collection, one at a
time.

The Vector<T> type

Supports an array-like structure for storing any type of object. The
number of objects to be stored increases automatically as necessary.

The Stack<T> type

Supports the storage of any type of object in a pushdown stack.

The LinkedList<T> type

Supports the storage of any type of object in a doubly-linked list, which
is a list that you can iterate though forwards or backwards.

The HashMap<K,V> type

Supports the storage of an object of type V in a hash table, sometimes
called a map. The object is stored using an associated key object of type
K. To retrieve an object you just supply its associated key.

Collections of Objects

¢ Three Main Types of Collections
e Sets
e Sequences

e Maps

¢ Sets
e The simple kinds of collection
e The objects are not ordered in any particular way.

e The objects are simply added to the set without any control over where
they go.

Collections of Objects

¢ Seqguences

e The objects are stored in a linear fashion, not necessarily in any
particular order, but in an arbitrary fixed sequence with a beginning and an
end.

e Collections generally have the capability to expand to accommodate as
many elements as necessary.

e The various types of sequence collections
— Array or Vector
— LinkedList
— Stack

— Queue

Collections of Objects

¢ Maps
e Each entry in the collection involves a pair of objects.
e A map is also referred to sometimes as a dictionary.

e Each object that is stored in a map has an associated key object, and the
object and its key are stored together as a “name-value” pair.

Comparable and Comparator

+ The interface java.lang.Comparable<T> can
be implemented by any class whose objects can
be sorted.

e public int compareTo (T other) :

return a value that is less than, equal to, or
greater than zero as this object is less than,
equal to, or greater than the other object.

+ If a given class does not implement Comparable or
If its natural ordering is wrong for some purpose,

java.util.Comparator object can be used
e public 1nt compare (T ol, T 02)
e boolean equals (Object obj)

The Collection Interface

+ The Collection Interface
* The basis of much of the collection system is the Collection interface.

+ Methods:
e public 1nt size()
e public boolean 1sEmpty ()
e public boolean contains (Object elem)
e public Iterator<kE> iterator /()
e public Object[] toArray/()
e public <T> T[] toArray (T[] dest)
e public boolean add(E elem)
e public boolean remove (Object elem)
e public boolean containsAll (Collection<?> coll)
e public boolean addAll (Collection<? extends E> coll)
e public boolean removeAll (Collection<?> coll)
e public boolean retainAll (Collection<?> coll)
e public void clear()

Collection Classes

+ Classes in Sets:

HashSet<T>
LinkedHashSet<T>
TreeSet<T>

EnumSet<T extends
Enum<T>>

+ Classes in Lists:

To define a collection whose
elements have a defined order-
each element exists in a
particular position the
collection.

Vector<rI>
Stack<T>
LinkedList<T>
ArrayList<T>

+ Class in Queues:

FIFO ordering
PriorityQueue<T>

+ Classes in Maps:

Does not extend Collection
because it has a contract that is
different in important ways: do
not add an element to a
Map(add a key/value pair), and
a Map allows looking up.

Hashtable<K, V>
HashMap<K, V>
LinkedHashMap<K, V>
WeakHashMap<K, V>
IdentityHashMap<K, V>
TreeMap<K, V> ! keeping its

keys sorted in the same way as
TreeSet

10

Sets

+ The simple kinds of collection

+ The objects are not ordered in any
particular way.

+ The objects are simply added to the set
without any control over where they go.

+ Contains no methods other than those
inherited from Collection

e Iterator

e The elements are traversed in no particular
order

11

Tree of Sets

.
.t
.
Y
.
.
Py
.
PRy
.
Ry
4

Iterable<E>
A

Collection<E>
A

KL
.
.
.
.
.
.
.

Set<E> I
y A .

SortedSet<E>

HashSet<E>

A

T

.
.
",
LN
a
LN
",
e,
e,

.
e,
0
LN
'.
LN
a
.
“
e,
a,

EnumSet<E>

TreeSet<<E>

LinkedHashSet<E>

12

2

*® & o o

2

interface Set<E>

boolean add(E e)

boolean addAll (Collection<? extends E> c)
vold clear ()

boolean contalns (Object o)

boolean containsAll (Collection<?> c)
boolean i1sEmpty()

Tterator 1terator ()

boolean remove (Object 0)

boolean retainAll (Collection <?> C)
int size()

Object [] toArray()

<T> T[] toArrav (T[] a)

13

interface SortedSet<E>

SortedSet — a Set that maintains its

elements in ascending order. Several
additional operations are provided to take
advantage of the ordering. Sorted sets are
used for naturally ordered sets, such as
word lists and membership rolls.

¢ Iterator

» The elements are traversed according to the
natural ordering (ascending)

14

interface SortedSet<E>

public interface SortedSet<E> extends Set<E> {
// Range-view
SortedSet<E> subSet (E fromElement, E toElement);
SortedSet<E> headSet (E toElement);
SortedSet<E> tailSet (E fromElement);

// Endpoints
E first();
E last();

// Comparator access
Comparator<? super E> comparator():;

15

Set implementations

+ HashSet implements Set
« Hash tables as internal data structure (faster)

e LinkedHashSet extends HashSet
* Elements are traversed by iterator according to
the insertion order
s TreeSet Implements SortedSet

» red-black tree structure (R-B trees) as internal
data structure (computationally expensive)

16

HashSet

Implement the interface Set.

Implemented using a hash table.
Saudnrifiesrinunussy lwaszfiailadananaanais
ANTDNNALLUNLUTDA hashCode ()

No ordering of elements.

add, remove, and contains methods constant time
complexity O(c).

17

LinkedHashSet

+ extend HashSet with linked list
implementation

+ support ordering of elements (ANAIAUN
STENGIRYST)

o add, remove, and contains methods

linear time complexity O(n), where n is the
number of elements in the set.

18

TreeSet

+ Implement the interface Set.

+ Implemented using tree structure.
+ Guarantees ordering of elements.

o add, remove, and contains methods
logarithmic time complexity O(log (n)),
where n is the number of elements in the
set.

19

Maps

+ Map
(key, value) binding
No duplicate keys

+ Examples

identity code (String), person (Person)
student ID (Integer), student (Student)

20

Maps

+ Each entry in the collection involves a pair
of objects.

+ A map is also referred to sometimes as a
dictionary.

+ Each object that is stored in a map has an
associated key object, and the object and
its key are stored together as a
“name-value” pair.

+ Maps do not have an iterator

21

Tree of Maps

Map<K, V>
------- AT G
Sortedfap«'w P EnumMap<K, V>
HashMap<E> | ™
TreeMap<K, V> T WeakHashMap<K, V>
LinkedHashMap<K, V>

22

Classes in Maps

Does not extend Collection because it has a

contract that is different in important ways: do
not add an element to a Map(add a key/value
pair), and a Map allows looking up.
Hashtable<K, V>

HashMap<K, V>

LinkedHashMap<K, V>
WeakHashMap<K, V>
IdentityHashMap<K, V>

TreeMap<K, V> ! keeping its keys sorted in
the same way as TreeSet

23

interface Map<K,Vv>

Map — an object that maps keys to values. A

Map cannot contain duplicate keys; each
key can map to at most one value.

24

interface Map<K, V>

public i1nterface Map<K,V> {
// Basic operations
V put (K key, V value);
V get (Object key);
V remove (Object key);
boolean containsKey (Object key);
boolean containsValue (Object value);
int size () ;
boolean 1sEmpty () ;
// Bulk operations

vold putAll (Map<? extends K, ? extends V> m);

void clear () ;
// Collection Views
public Set<K> keySet();
public Collection<V> wvalues|();
public Set<Map.Entry<K,V>> entrySet();
// Interface for entrySet elements
public interface Entry {
K getKey();
V getValue() ;
V setValue (V value) ;

25

interface SortedMap<K, V>

public interface SortedMap<K, V> extends Map<K, V>{

SortedMap<K, V> subMap (K fromKey, K toKey);
SortedMap<K, V> headMap (K toKey);
SortedMap<K, V> tailMap (K fromKey) ;

K firstKey () ;

K lastKey ()

Comparator<? super K> comparator();

26

HashMap and TreeMap Classes

+ The HashMap and HashTree classes
implement the Map interface.

+ HashMap

 The implementation is based on a hash table.

» No ordering on (key, value) pairs.

+ TreeMap
* The implementation is based on R-B trees
Structure
 (key, value) pairs are ordered on the key.

27

Comparable and Comparator

+ The interface java.lang.Comparable<T> can be
Implemented by any class whose objects can be sorted.
e public int compareTo (T other):returna
value that is less than, equal to, or greater than zero as

this object is less than, equal to, or greater than the
other object.

+ If a given class does not implement Comparable or if its
natural ordering is wrong for some purpose,
java.util.Comparator object can be used

e public i1int compare (T ol, T 02)
e boolean equals (Object obj)

28

Enhanced for loop

If a class extends Iterable<E> you can use
Java's enhanced for loop of this general form

for (E refVar : collection<E>) {
refVar refers to each element in collection<E>

}
example

ArrayList<String> list = new
ArrayList<String> () ;

list.add ("First"), list.add("Second");
for (String s : 1list)
System.out.println (s.toLowerCase()) ;

Algorithms

Java has polymorphic algorithms to provide
functionality for different types of collections

o Sorting (e.g. sort)
o Shuffling (e.g. shuffle)

e Routine Data Manipulation (e.g. reverse,
addAll)

o Searching (e.g. binarySearch)
o Composition (e.g. frequency)
o Finding Extreme Values (e.g. max)

30

Algorithms

All of the algorithms, provided by the
Collections class, take the form of static

methods

o Most of the algorithms operate on List
objects, but a couple of them (max and min)
operate on arbitrary Collection objects

31

Collections static methods

Static library with many useful algorithms

+ Searching...
int pos = Collections.binarySearch(list, key):

+ Counting...
int £ = Collections.frequency (myColl, item);

+ Sorting...
Collections.sort(list) ;
Collections.sort(list, comparator);

Max, Min, Shuffling, reversing, performing set operations and
much more...

32

Sorting

+ The sort operation uses a slightly optimized
merge sort algorithm

e Fast: This algorithm is guaranteed to run in n
log(n) time, and runs substantially faster on
nearly sorted lists.

o Stable: That is to say, it doesn't reorder equal
elements.

33

Iy 1 9) 4 .
A10819015 IEIUNOA sort VD Collections

import JjJava.util.*;

public class SortDemo {
public static void main(String args[]) {

J

List <String> 1 = new ArraylList <String>

for (int 1 = 0; i1 < args.length; i++)
l.add(args[1]);

Collections.sort(1);

System.out.println(1);

atoyalitllsunsun1e command line AoUAITUIUTUNTY 15U

java SortDemo One Two Three Four Five

()

34

Arrays

+ It is too bad that arrays are not collections

» You loose all of the power provided by the
collection framework

+ The class Arrays contains

 various methods for manipulating arrays (such
as sorting and searching)

e |t also contains methods that allows arrays to
be viewed as lists.

35

Y, 1 =~
m@mqmﬂ%’mmﬂ sort UBNAANH Arrays

import java.util.*;

public class ArraysSortDemo {
public static void main(String args|[])

{

Arrays.sort(args);

List 1 = Arrays.asList(args);

System.out.println(1);

}
}

atoyalidlisunsun1e command line o5 uTsunTY 13U

java ArraysSortDemo One Two Three Four Five

36

Other Algorithms

+ Other algorithms provided by the Collections
class include
» Shuffling

e Data manipulation
—reverse ()
—fill()
—copy ()

» Searching

e Finding extreme values
—max ()

—min ()

37

What About User Objects?

+ The Collections framework will work with
any Java class

+ You need to be sure you have defined
e equals ()
e hashCode ()

e compareTo ()

» Don’t use mutable objects for keys in a
Map

38

hashCode ()

+ hashCode () returns distinct integers for distinct

objects.
o If two objects are equal according to the equals ()
method, then the hashCode () method on each of the
two objects must produce the same integer resuilt.

e When hashCode () Is invoked on the same object

more than once, it must return the same integer,
provided no information used in equals comparisons
has been modified.

e Itis not required that if two objects are unequal
according to equals () that hashCode () must return

distinct integer values.

39

Interface Comparable

» This ordering is referred to as the class's natural
ordering, and the class's compareTo () method

is referred to as its natural comparison method.
+ Aclass's natural ordering is said to be consistent

with equals if and only if
(el.compareTo ((Object)e?2)==0) has the

same boolean value as:
el.equals ((Object)e2) forevery el and e2

of class C.

40

Y] 1 ~q Yo] Y
NIDYINAAIY Name ﬂiﬂ)’ﬂ‘u collection Ulﬂ

import java.util.*;
public class Name implements Comparable {

private String first;
private String last;

public Name(String firstName, String lastName
first = firstName;
last = lastName;

}

public String getFirst () |
return first;

}

public String getlLast () {
return last;

}

)

{

41

AN Name (618)

public boolean equals(Object o) {

boolean retval = false;
1f (o !=null && o instanceof Name) {
Name n = (Name)o;
retval = n.getFirst () .equals(first) &é&

n.getlLast () .equals(last);
}

return retval;

}

public int hashCode () {

return first.hashCode () + last.hashCode();
}

public String toString () {
return first + " " + last;

}

AA1d Name (GiE])

public 1nt compareTo(Object o) throws

ClassCastException {
int retval;

Name n = (Name) o0;
retval = last.compareTo(n.getLast ());
if (retval == 0)
retval = first.compareTo(n.getFirst());

return retval;

} //Name

(oY (Y] 1 A =

v =1 < o’dy o ! ~ =) 1
17 ﬂTiL‘]ﬁfJ‘UL‘V]EJ‘]J@E]‘]JLi]ﬂ@m Gl‘lraiJﬂ’JTJJﬁWﬂﬂlﬂ‘UuﬁJﬁﬂa 1NN B ﬁNL‘]JSEJ‘]J!,‘I/]fJ‘U Hiyananay

() qQ
Yy Y v o A

9 =~ v =K ~ ~ d' 9 o 1
ﬂTL!TJJ’df}ﬁLﬂEJ’Jﬂl!iN"l]%ll“]J!,‘]J'ifJ‘lJmEJ‘]JGD'f] ﬂT@]@QﬂTiiﬁﬂ’JTﬂJﬁTﬂﬂJﬂUG})’@ NINNIN ‘Lﬂllﬁf}’ﬁ fl]‘éﬁ!lﬁﬂfll
9y

v

f1081911081915? -

Y, I) 9 v .
AIDYINNIIUINATN Name Uhflf])’ﬂ‘]_l collection

class SortNameDemo { // run this class to test Name class
public static void main(String args|[]) {
List <Name> 1 = new ArrayList <Name> ();

l1.add(new Name ("Sombat", "Maimee"));

l.add(new Name ("Somsri", "Deejing"));

l.add(new Name ("Amorn", "Nonnan"));
l.add(new Name ("Pichai", "Maimee"));

Collections.sort(1);

System.out.println(1);

NAAWEANNNIT3U A ITENATNUINANANDUILAYANTENTE
[Somsri Deegjing, Pichai Maimee, Sombat Maimee, Amorn Nonnan]

44

